Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Surjective stability in dimension 0 for $ K\sb{2}$ and related functors


Author: Michael R. Stein
Journal: Trans. Amer. Math. Soc. 178 (1973), 165-191
MSC: Primary 20G35; Secondary 14L15
DOI: https://doi.org/10.1090/S0002-9947-1973-0327925-8
MathSciNet review: 0327925
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper continues the investigation of generators and relations for Chevalley groups over commutative rings initiated in [14]. The main result is that if A is a semilocal ring generated by its units, the groups $ L({\mathbf{\Phi }},A)$ of [14] are generated by the values of certain cocycles on $ {A^\ast} \times {A^\ast}$. From this follows a surjective stability theorem for the groups $ L({\mathbf{\Phi }},A)$, as well as the result that $ L({\mathbf{\Phi }},A)$ is the Schur multiplier of the elementary subgroup of the points in A of the universal Chevalley-Demazure group scheme with root system $ {\mathbf{\Phi }}$, if $ {\mathbf{\Phi }}$ has large enough rank. These results are proved via a Bruhat-type decomposition for a suitably defined relative group associated to a radical ideal. These theorems generalize to semilocal rings results of Steinberg for Chevalley groups over fields, and they give an effective tool for computing Milnor's groups $ {K_2}(A)$ when A is semilocal.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, M. Lazard and J.-P. Serre, Sous-groupes d'indice fini dans SL$ (n,$   Z$ )$, Bull. Amer. Math. Soc. 70 (1964), 385-392. MR 28 #5117. MR 0161913 (28:5117)
  • [2] A. Christofides, Structure and presentations of unimodular groups, Thesis, Queen Mary College, University of London, 1966.
  • [3] R. K. Dennis, Universal $ G{E_n}$ rings and the functor $ {K_2}$ (unpublished manuscript; see [24]).
  • [4] K. Eldridge and I. Fischer, D.C.C. rings with a cyclic group of units, Duke Math. J. 34 (1967), 243-248. MR 35 #5467. MR 0214618 (35:5467)
  • [5] R. W. Gilmer, Jr., Finite rings having a cyclic multiplicative group of units, Amer. J. Math. 85 (1963), 447-452. MR 27 #4828. MR 0154884 (27:4828)
  • [6] G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110-134. MR 14, 619. MR 0052438 (14:619b)
  • [7] S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
  • [8] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4) 2 (1969), 1-62. MR 39 #1566. MR 0240214 (39:1566)
  • [9] J. Milnor, Introduction to algebraic K-theory, Ann. of Math. Studies, no. 72, Princeton Univ. Press, Princeton, N. J., 1971. MR 0349811 (50:2304)
  • [10] C. C. Moore, Group extensions of p-adic and adelic linear groups, Inst. Hautes Études Sci. Publ. Math. No. 35 (1968), 157-222. MR 39 #5575. MR 0244258 (39:5575)
  • [11] J. Silvester, On the $ {K_2}$ of a free associative algebra, Proc. London Math. Soc. (to appear). MR 0313286 (47:1841)
  • [12] -, A presentation of the $ G{L_n}$ of a semi-local ring (to appear).
  • [13] M. Stein, Chevalley groups over commutative rings, Bull. Amer. Math. Soc. 77 (1971), 247-252. MR 0291358 (45:451)
  • [14] -, Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965-1004. MR 0322073 (48:437)
  • [15] -, Injective stability in dimension 0 for $ {K_2}$ and related functors (in preparation).
  • [16] J. Silvester, Relativizing functors on rings and algebraic K-theory, J. Algebra 19 (1971), 140-152. MR 0283055 (44:288)
  • [17] R. Steinberg, Générateurs, relations et revêtements de groupes algébriques, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Librarie Universitaire, Louvain; Gauthier-Villars, Paris 1962, pp. 113-127. MR 27 #3638. MR 0153677 (27:3638)
  • [18] -, Lectures on Chevalley groups, Mimeographed notes, Yale University, New Haven, Conn., 1967.
  • [19] W. Wardlaw, Defining relations for integrally parameterized Chevalley groups, Thesis, University of California, Los Angeles, Calif., 1966.
  • [20] R. K. Dennis, Stability for $ {K_2}$, Proc. Conf. on Orders and Group Rings (Ohio State Univ. Columbus, Ohio, May 12-15, 1972), Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear). MR 0347892 (50:393)
  • [21] -, Surjective stability for the functor $ {K_2}$ (to appear).
  • [22] R. K. Dennis and M. R. Stein, A new exact sequence for $ {K_2}$ and some consequences for rings of integers, Bull. Amer. Math. Soc. 78 (1972), 600-603. MR 0302631 (46:1775)
  • [23] -, $ {K_2}$ of discrete valuation rings (to appear).
  • [24] M. R. Stein and R. K. Dennis, $ {K_2}$ of radical ideals and semi-local rings revisited, Proc. Conf. on Algebraic K-Theory (Battelle Seattle Research Center, August 28--September 8, 1972), Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20G35, 14L15

Retrieve articles in all journals with MSC: 20G35, 14L15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0327925-8
Keywords: Chevalley group, universal central extension, stability theorems, Steinberg group, commutators in Chevalley groups, $ {K_2}$, second homology group, Bruhat decomposition
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society