Additive set functions on lattices of sets
Author:
Gene A. DeBoth
Journal:
Trans. Amer. Math. Soc. 178 (1973), 341355
MSC:
Primary 28A15; Secondary 60G45
MathSciNet review:
0333109
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper is concerned with properties of additive set functions defined on lattices of sets. Extensions of results of Brunk and Johansen, Darst, Johansen, and Uhl are obtained. Two fundamental approximation properties for lattices of sets (established in another paper) permit us to translate the setting and consider countably additive set functions defined on sigma lattices of sets. Thereby results for countably additive set functions defined on sigma lattices of sets are used to obtain alternate derivations and extensions of Darst's results for additive set functions defined on lattices of sets, i.e., we consider the RadonNikodym derivative, conditional expectation, and martingale convergence for lattices of sets.
 [1]
H.
D. Brunk, Conditional expectation given a 𝜎lattice and
applications, Ann. Math. Statist. 36 (1965),
1339–1350. MR 0185629
(32 #3091)
 [2]
H.
D. Brunk and S.
Johansen, A generalized RadonNikodym derivative, Pacific J.
Math. 34 (1970), 585–617. MR 0267066
(42 #1968)
 [3]
Richard
B. Darst, The Lebesgue decomposition, RadonNikodym derivative,
conditional expectation, and martingale convergence for lattices of
sets, Pacific J. Math. 35 (1970), 581–600. MR 0291398
(45 #491)
 [4]
R. B. Darst and Gene A. De Both, Norm convergence of martingales of RadónNikodym derivatives given a lattice, Pacific J. Math. (to appear).
 [5]
, Two approximation properties and a Radón Nikodym derivative for lattices of sets (to appear).
 [6]
Nelson
Dunford and Jacob
T. Schwartz, Linear Operators. I. General Theory, With the
assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics,
Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers,
Ltd., London, 1958. MR 0117523
(22 #8302)
 [7]
Paul
R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New
York, N. Y., 1950. MR 0033869
(11,504d)
 [8]
S.
Johansen, The descriptive approach to the derivative of a set
function with respect to a 𝜎lattice, Pacific J. Math.
21 (1967), 49–58. MR 0209427
(35 #325)
 [9]
M.
A. Krasnosel′skiĭ and Ja.
B. Rutickiĭ, Convex functions and Orlicz spaces,
Translated from the first Russian edition by Leo F. Boron, P. Noordhoff
Ltd., Groningen, 1961. MR 0126722
(23 #A4016)
 [10]
Solomon
Leader, The theory of 𝐿^{𝑝}spaces for finitely
additive set functions, Ann. of Math. (2) 58 (1953),
528–543. MR 0058126
(15,326b)
 [11]
B.
J. Pettis, On the extension of measures, Ann. of Math. (2)
54 (1951), 186–197. MR 0041912
(13,19f)
 [12]
J.
J. Uhl Jr., Applications of RadonNikodým
theorems to martingale convergence, Trans.
Amer. Math. Soc. 145 (1969), 271–285. MR 0251756
(40 #4983), http://dx.doi.org/10.1090/S0002994719690251756X
 [13]
J.
J. Uhl Jr., Martingales of vector valued set functions,
Pacific J. Math. 30 (1969), 533–548. MR 0248515
(40 #1767)
 [14]
J.
J. Uhl Jr., Orlicz spaces of finitely additive set functions,
Studia Math. 29 (1967), 19–58. MR 0226395
(37 #1985)
 [1]
 H. D. Brunk, Conditional expectation given a lattice and applications, Ann. Math. Statist. 36 (1965), 13391350. MR 32 #3091. MR 0185629 (32:3091)
 [2]
 H. D. Brunk and S. Johansen, A generalized RadónNikodym derivative, Pacific J. Math. 34 (1970), 585617. MR 42 # 1968. MR 0267066 (42:1968)
 [3]
 R. B. Darst, The Lebesgue decomposition, RadónNikodym derivative, conditional expectation, and martingale convergence for lattices of sets, Pacific J. Math. 35 (1970), 581600. MR 0291398 (45:491)
 [4]
 R. B. Darst and Gene A. De Both, Norm convergence of martingales of RadónNikodym derivatives given a lattice, Pacific J. Math. (to appear).
 [5]
 , Two approximation properties and a Radón Nikodym derivative for lattices of sets (to appear).
 [6]
 N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
 [7]
 P. R. Halmos, Measure theory, Van Nostrand, Princeton, N.J., 1950. MR 11, 504. MR 0033869 (11:504d)
 [8]
 S. Johansen, The descriptive approach to the derivative of a set function with respect to a lattice. Pacific J. Math. 21 (1967), 4958. MR 0209427 (35:325)
 [9]
 M. A. Krasnosel' skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, GITTL, Moscow, 1958; English transl., Noordhoff, Groningen, 1961. MR 21 #5144; MR 23 #A4016. MR 0126722 (23:A4016)
 [10]
 S. Leader, The theory of spaces for finitely additive set functions, Ann. of Math. (2) 58 (1953), 528543. MR 15, 326. MR 0058126 (15:326b)
 [11]
 B. J. Pettis, On the extension of measures, Ann. of Math. (2) 54 (1951), 186197. MR 13, 19. MR 0041912 (13:19f)
 [12]
 J. J. Uhl, Jr., Applications of RadónNikodym theorems to martingale convergence, Trans. Amer. Math. Soc. 145 (1969), 271285. MR 40 #4983. MR 0251756 (40:4983)
 [13]
 , Martingales of vector valued set functions, Pacific J. Math 30 (1969), 533548. MR 40 #1767. MR 0248515 (40:1767)
 [14]
 , Orlicz spaces of finitely additive set functions, Studia Math. 29 (1967), 1958. MR 37 #1985. MR 0226395 (37:1985)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
28A15,
60G45
Retrieve articles in all journals
with MSC:
28A15,
60G45
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002994719730333109X
PII:
S 00029947(1973)0333109X
Keywords:
Lattice of sets,
algebra of sets,
finitely additive set functions,
sigma algebra,
sigma lattice,
condition,
Orlicz space,
RadonNikodym derivative,
conditional expectation,
martingale
Article copyright:
© Copyright 1973
American Mathematical Society
