Multiplicities of second order linear recurrences

Authors:
Ronald Alter and K. K. Kubota

Journal:
Trans. Amer. Math. Soc. **178** (1973), 271-284

MSC:
Primary 10A35; Secondary 10B05

DOI:
https://doi.org/10.1090/S0002-9947-1973-0441841-2

MathSciNet review:
0441841

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A second order linear recurrence is a sequence of integers satisfying a where *N* and *M* are fixed integers and at least one is nonzero. If *k* is an integer, then the number of solutions of is at most 3 (respectively 4) if and there is an odd prime (respectively *q* = 3) such that and . Further is either infinite or provided that either (i) or (ii) .

**[1]**R. Alter and K. K. Kubota,*The diophantine equation*,*and a related sequence*, J. Number Theory (to appear).**[2]**Roger Apéry,*Sur une équation diophantienne*, C. R. Acad. Sci. Paris**251**(1960), 1263–1264 (French). MR**0120194****[3]**P. Chowla, S. Chowla, M. Dunton, and D. J. Lewis,*Some diophantine equations in quadratic number fields*, Norske Vid. Selsk. Forh.**31**(1958), 181–183. MR**0105390****[4]**S. Chowla, M. Dunton, and D. J. Lewis,*Linear recurrences of order two*, Pacific J. Math.**11**(1961), 833–845. MR**0136569****[5]**R. R. Laxton,*Linear recurrences of order two*, J. Austral. Math. Soc.**7**(1967), 108–114. MR**0207674****[6]**D. J. Lewis,*Diophantine equations: 𝑝-adic methods*, Studies in Number Theory, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969, pp. 25–75. MR**0241359****[7]**Andrzej Schinzel,*The intrinsic divisors of Lehmer numbers in the case of negative discriminant*, Ark. Mat.**4**(1962), 413–416 (1962). MR**0139567**, https://doi.org/10.1007/BF02591623**[8]**Thoralf Skolem, S. Chowla, and D. J. Lewis,*The diophantine equation 2ⁿ⁺²-7=𝑥² and related problems*, Proc. Amer. Math. Soc.**10**(1959), 663–669. MR**0109137**, https://doi.org/10.1090/S0002-9939-1959-0109137-4**[9]**Morgan Ward,*The null divisors of linear recurring series*, Duke Math. J.**2**(1936), no. 3, 472–476. MR**1545940**, https://doi.org/10.1215/S0012-7094-36-00240-5**[10]**-,*Some diophantine problems connected with linear recurrences*, Report of the Institute of the Theory of Numbers, University of Colorado, Boulder, 1959, pp. 250-257.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
10A35,
10B05

Retrieve articles in all journals with MSC: 10A35, 10B05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1973-0441841-2

Keywords:
Linear recurrence,
*p*-adic numbers,
prime number,
multiplicity,
*p*-adic power series,
companion equation

Article copyright:
© Copyright 1973
American Mathematical Society