Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multiplicities of second order linear recurrences


Authors: Ronald Alter and K. K. Kubota
Journal: Trans. Amer. Math. Soc. 178 (1973), 271-284
MSC: Primary 10A35; Secondary 10B05
DOI: https://doi.org/10.1090/S0002-9947-1973-0441841-2
MathSciNet review: 0441841
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A second order linear recurrence is a sequence $ \{ {a_n}\} $ of integers satisfying a $ {a_{n + 2}} = M{a_{n + 1}} - N{a_n}$ where N and M are fixed integers and at least one $ {a_n}$ is nonzero. If k is an integer, then the number $ m(k)$ of solutions of $ {a_n} = k$ is at most 3 (respectively 4) if $ {M^2} - 4N < 0$ and there is an odd prime $ q \ne 3$ (respectively q = 3) such that $ q\vert M$ and $ q\nmid kN$. Further $ M = {\sup _k}{\;_{{\text{integer}}}}m(k)$ is either infinite or $ \leq 5$ provided that either (i) $ (M,N) = 1$ or (ii) $ 6\nmid N$.


References [Enhancements On Off] (What's this?)

  • [1] R. Alter and K. K. Kubota, The diophantine equation $ {x^2} + 11 = {3^n}$, and a related sequence, J. Number Theory (to appear).
  • [2] R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris 251 (1960), 1263-1264. MR 22 #10951. MR 0120194 (22:10951)
  • [3] P. Chowla, S. Chowla, M. Dunton and D. J. Lewis, Some diophantine equations in quadratic number fields, Norske Vid. Selsk. Forh. 31 (1958), 181-183. MR 21 #4132. MR 0105390 (21:4132)
  • [4] S. Chowla, M. Dunton and D. J. Lewis, Linear recurrences of order two, Pacific J. Math. 11 (1961), 883-845. MR 25 #39. MR 0136569 (25:39)
  • [5] R. R. Laxton, Linear recurrences of order two, J. Austral. Math. Soc. 7 (1967), 108-114. MR 34 #7489. MR 0207674 (34:7489)
  • [6] D. J. Lewis, Diophantine equations: p-adic methods, Studies in Number Theory, Math. Assoc. Amer., distributed by Prentice-Hall, Englewood Cliffs, N. J., 1969, pp. 25-75. MR 39 #2699. MR 0241359 (39:2699)
  • [7] A. Schinzel, The intrinsic divisors of Lehmer numbers in the case of negative discriminant, Ark. Mat. 4 (1962), 413-416. MR 26 #2999. MR 0139567 (25:2999)
  • [8] Th. Skolem, S. Chowla and D. J. Lewis, The diophantine equation $ {2^{n + 2}} - 7 = {x^2}$ and related problems, Proc. Amer. Math. Soc. 10 (1959), 663-669. MR 22 #25. MR 0109137 (22:25)
  • [9] M. Ward, Prime divisors of second order recurring sequences, Duke Math. J. 2 (1936), 472-476. MR 1545940
  • [10] -, Some diophantine problems connected with linear recurrences, Report of the Institute of the Theory of Numbers, University of Colorado, Boulder, 1959, pp. 250-257.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10A35, 10B05

Retrieve articles in all journals with MSC: 10A35, 10B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0441841-2
Keywords: Linear recurrence, p-adic numbers, prime number, multiplicity, p-adic power series, companion equation
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society