Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Envelopes of holomorphy and holomorphic convexity

Author: Robert Carmignani
Journal: Trans. Amer. Math. Soc. 179 (1973), 415-431
MSC: Primary 32D10; Secondary 32E05, 32E30
MathSciNet review: 0316748
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is primarily a study of generalized notions of envelope of holomorphy and holomorphic convexity for special (algebraically restricted) subsets of $ {{\mathbf{C}}^n}$ and in part for arbitrary subsets of $ {{\mathbf{C}}^n}$. For any special set S in $ {{\mathbf{C}}^n}$, we show that every function holomorphic in a neighborhood of S not only can be holomorphically continued but also holomorphically extended to a neighborhood in $ {{\mathbf{C}}^n}$ of a maximal set $ \tilde{S}$, the ``envelope of holomorphy'' of S, which is also a special set of the same type as S. Formulas are obtained for constructing $ \tilde{S}$ for any special set S. ``Holomorphic convexity'' is characterized for these special sets. With one exception, the only topological restriction on these special sets is connectivity. Examples are given which illustrate applications of the theorems and help to clarify the concepts of ``envelope of holomorphy'' and ``holomorphic convexity."

References [Enhancements On Off] (What's this?)

  • [1] S. Bochner and W. T. Martin, Several complex variables, Princeton Math. Series, vol. 10, Princeton Univ. Press, Princeton, N.J., 1948. MR 10, 366. MR 0027863 (10:366a)
  • [2] H. J. Bremermann, Complex convexity, Trans. Amer. Math. Soc. 82 (1956), 17-51. MR 18, 28. MR 0079100 (18:28f)
  • [3] -, Construction of the envelopes of holomorphy of arbitrary domains, Rev. Mat. Hisp. Amer. (4) 17 (1957), 175-200. MR 19, 880. MR 0090844 (19:880c)
  • [4] H. Cartan, Séminaires École Normale Supérieure, 1951/52, Secrétariat mathématique, Paris, 1953. MR 16, 233.
  • [5] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969. MR 0410387 (53:14137)
  • [6] F. R. Harvey and R. O. Wells, Jr., Compact holomorphically convex subsets of a Stein manifold, Trans. Amer. Math. Soc. 136 (1969), 509-516. MR 0235158 (38:3470)
  • [7] L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1966. MR 0203075 (34:2933)
  • [8] B. Malgrange, Lectures on the theory of functions of complex variables, Tata Institute of Fundamental Research, Bombay, 1958.
  • [9] K. Oka, Sur les fonctions analytiques de plusieurs variables. IX. Domaines finis sans point critique intérieur, Japan. J. Math. 23 (1953), 97-155. MR 17, 82. MR 0071089 (17:82b)
  • [10] H. Rossi, On envelopes of holomorphy, Comm. Pure Appl. Math. 16 (1963), 9-17. MR 26 #6436. MR 0148940 (26:6436)
  • [11] P. Thullen, Zur Theorie der Singuläritäten der Funktionen zweier komplexer Veränderlichen, Math. Ann. 106 (1932), 64-76. MR 1512749
  • [12] V. S. Vladimirov, Methods of the theory of functions of several complex variables, ``Nauka", Moscow, 1964; English transl., M.I.T. Press, Cambridge, Mass., 1966. MR 30 #2163; MR 34 #1551.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32D10, 32E05, 32E30

Retrieve articles in all journals with MSC: 32D10, 32E05, 32E30

Additional Information

Keywords: Reinhardt set, tube set, complete Hartogs set, domain of holomorphy, pseudoconvex, logarithmically convex, plurisubharmonic, strictly convex, Levi problem, Stein manifold, Riemann domain, spread, projective limit, spectrum, holomorphically continued, holomorphically extended, envelope of holomorphy, holomorphically convex
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society