Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Absolutely summing and dominated operators on spaces of vector-valued continuous functions


Author: Charles Swartz
Journal: Trans. Amer. Math. Soc. 179 (1973), 123-131
MSC: Primary 47B10
DOI: https://doi.org/10.1090/S0002-9947-1973-0320796-5
MathSciNet review: 0320796
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A. Pietsch has shown that the class of dominated linear operators on $ C(S)$ coincides with the class of absolutely summing operators. If the space $ C(S)$ is replaced by $ {C_X}(S)$, where X is a Banach space, this is no longer the case. However, any absolutely summing operator is always dominated, and the classes of operators coincide exactly when X is finite dimensional. A characterization of absolutely summing operators on $ {C_X}(S)$ is given.


References [Enhancements On Off] (What's this?)

  • [1] C. Bessaga and A. Pecłzyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. MR 22 #5872. MR 0115069 (22:5872)
  • [2] N. Dinculeanu, Vector measures, Internat. Series of Monographs in Pure and Appl. Math., vol. 95, Pergamon Press, Oxford; VEB Deutscher Verlag der Wissenschaften, Berlin, 1967. MR 34 #6011b. MR 0206190 (34:6011b)
  • [3] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [4] K. Floret and J. Wloka, Einführung in die Theorie der lokalkonvexen Räume, Lecture Notes in Math., no. 56, Springer-Verlag, Berlin and New York, 1968. MR 37 #1945. MR 0226355 (37:1945)
  • [5] C. Foiaş, and I. Singer, Some remarks on the representation of linear operators in spaces of vector-valued continuous functions, Rev. Roumaine Math. Pures Appl. 5 (1960), 729-752. MR 24 #A1618. MR 0131770 (24:A1618)
  • [6] A. Pietsch, Nukleare lokalkonvexe Räume, Schriftenreihe der Institute für Mathematik bei der Deutschen Akademie der Wissenschaften zu Berlin. Reihe A, Reine Mathematik, Heft 1, Akademie-Verlag, Berlin, 1965. MR 31 #6114. MR 0181888 (31:6114)
  • [7] -, Absolut summierende Abbildungen in lokalkonvexen Räumen, Math. Nachr. 27 (1963), 77-103. MR 28 #1473. MR 0158247 (28:1473)
  • [8] -, Quasinukleare Abbildungen in normierten Räumen, Math. Ann. 165 (1966), 76-90. MR 33 #6412. MR 0198253 (33:6412)
  • [9] -, Absolut p-summierende Abbildungen in normrerten Räumen, Studia Math. 28 (1966/67), 333-353. MR 35 #7162. MR 0216328 (35:7162)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B10

Retrieve articles in all journals with MSC: 47B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0320796-5
Keywords: Dominated operator, absolutely summing operator, vector measure of bounded variation
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society