Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Absolutely summing and dominated operators on spaces of vector-valued continuous functions


Author: Charles Swartz
Journal: Trans. Amer. Math. Soc. 179 (1973), 123-131
MSC: Primary 47B10
MathSciNet review: 0320796
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A. Pietsch has shown that the class of dominated linear operators on $ C(S)$ coincides with the class of absolutely summing operators. If the space $ C(S)$ is replaced by $ {C_X}(S)$, where X is a Banach space, this is no longer the case. However, any absolutely summing operator is always dominated, and the classes of operators coincide exactly when X is finite dimensional. A characterization of absolutely summing operators on $ {C_X}(S)$ is given.


References [Enhancements On Off] (What's this?)

  • [1] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164. MR 0115069
  • [2] N. Dinculeanu, Vector measures, International Series of Monographs in Pure and Applied Mathematics, Vol. 95, Pergamon Press, Oxford-New York-Toronto, Ont.; VEB Deutscher Verlag der Wissenschaften, Berlin, 1967. MR 0206190
  • [3] Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR 0117523
  • [4] Klaus Floret and Joseph Wloka, Einführung in die Theorie der lokalkonvexen Räume, Lecture Notes in Mathematics, No. 56, Springer-Verlag, Berlin-New York, 1968 (German). MR 0226355
  • [5] Ciprian Foiaș and Ivan Singer, Some remarks on the representation of linear operators in spaces of vector-valued continuous functions, Rev. Math. Pures Appl. 5 (1960), 729–752. MR 0131770
  • [6] Albrecht Pietsch, Nukleare lokalkonvexe Räume, Schriftenreihe der Institute Für Mathematik bei der Deutschen Akademie der Wissenschaften zu Berlin. Reihe A, Reine Mathematik, Heft 1, Akademie-Verlag, Berlin, 1965 (German). MR 0181888
  • [7] Albrecht Pietsch, Absolut summierende Abbildungen in lokalkonvexen Räumen, Math. Nachr. 27 (1963), 77–103 (German). MR 0158247
  • [8] Albrecht Pietsch, Quasinukleare Abbildungen in normierten Räumen, Math. Ann. 165 (1966), 76–90 (German). MR 0198253
  • [9] A. Pietsch, Absolut 𝑝-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1966/1967), 333–353 (German). MR 0216328

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B10

Retrieve articles in all journals with MSC: 47B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0320796-5
Keywords: Dominated operator, absolutely summing operator, vector measure of bounded variation
Article copyright: © Copyright 1973 American Mathematical Society