Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On unaveraged convergence of positive operators in Lebesgue space


Authors: H. Fong and L. Sucheston
Journal: Trans. Amer. Math. Soc. 179 (1973), 383-397
MSC: Primary 60F15; Secondary 28A65
DOI: https://doi.org/10.1090/S0002-9947-1973-0329009-1
MathSciNet review: 0329009
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let T be a power-bounded positive conservative operator on $ {L_1}$ of a $ \sigma $-finite measure space. Let e be a bounded positive function invariant under the operator adjoint to T.

Theorem. (1) $ \smallint \vert{T^n}f\vert \cdot \;e \to 0$ implies (2) $ \smallint \vert{T^n}f\vert \to 0$.

If T and all its powers are ergodic, and T satisfies an abstract Harris condition, then(l) holds by the Jamison-Orey theorem for all integrable f with $ \smallint f \cdot e = 0$, and hence also (2) holds for such f. A new proof of the Jamison-Orey theorem is given, via the 'filling scheme'. For discrete measure spaces this is due to Donald Ornstein, Proc. Amer. Math. Soc. 22 (1969), 549-551. If T is power-bounded, conservative and ergodic, and $ 0 < {f_0} = T{f_0}$, then $ {f_0}\; \cdot \;e \in {L_1}$ implies $ {f_0} \in {L_1}$, hence (2) implies that $ {T^n}f$ converges for each $ f \in {L_1}$.

Theorem. Let T be a positive conservative contraction on $ {L_1}$; then the class of functions $ \{ f - Tf,f \in L_1^ + \} $ is dense in the class of functions $ \{ f - Tf,f \in {L_1}\} $.


References [Enhancements On Off] (What's this?)

  • [1] R. V. Chacon, Resolution of positive operators, Bull. Amer. Math. Soc. 68 (1962), 572-574. MR 25 #5384. MR 0141989 (25:5384)
  • [2] S. R. Foguel, The ergodic theory of Markov processes, Van Nostrand Math. Studies, no. 21, Van Nostrand Reinhold, New York, 1969. MR 41 #6299. MR 0261686 (41:6299)
  • [3] H. Fong, On invariant functions for positive operators, Colloq. Math. 22 (1970), 75-84. MR 42 #8266. MR 0273387 (42:8266)
  • [4] N. C. Jain, A note on invariant measures, Ann. Math. Statist. 37 (1966), 729-732. MR 33 #4992. MR 0196806 (33:4992)
  • [5] B. Jamison and S. Orey, Markov chains recurrent in the sense of Harris, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 41-48. MR 0215370 (35:6211)
  • [6] P. A. Meyer, Travaux de H. Rost en théorie du potentiel, Université de Strasbourg, Séminaire de Probabilités 1969/70.
  • [7] S. Orey, Limit theorems for Markov chain transition probabilities, Van Nostrand Math. Studies, no. 34, Van Nostrand Reinhold, New York, 1971. MR 0324774 (48:3123)
  • [8] -, An ergodic theorem for Markov chains, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962), 174-176. MR 26 #3117. MR 0145587 (26:3117)
  • [9] D. S. Ornstein, On a theorem of Orey, Proc. Amer. Math. Soc. 22 (1969), 549-551. MR 39 #6388. MR 0245076 (39:6388)
  • [10] D. S. Ornstein and L. Sucheston, On the existence of a $ \sigma $-finite invariant measure under a generalized Harris condition, Contributions to Ergodic Theory and Probability, Lecture Notes in Math., no. 160, Springer-Verlag, Berlin and New York, 1970; pp. 219-233. MR 0280680 (43:6399)
  • [11] -, An operator theorem on $ {L_1}$ convergence to zero, with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631-1639. MR 42 #6938. MR 0272057 (42:6938)
  • [12] H. Rost, Markoff-Ketten bei sich füllenden Löchern im Zustandsraum, Ann. Inst. Fourier (Grenoble) 21 (1971), 253-270. MR 0299755 (45:8803)
  • [13] L. Sucheston, On the ergodic theorem for positive operators. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 1-11. MR 35 #4371. MR 0213510 (35:4371)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60F15, 28A65

Retrieve articles in all journals with MSC: 60F15, 28A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0329009-1
Keywords: Positive operator, conservative and ergodic, invariant function, $ {L_1}$ convergence, transition measure, Harris condition
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society