The Cauchy problem for degenerate parabolic equations with discontinuous drift

Author:
Edward D. Conway

Journal:
Trans. Amer. Math. Soc. **179** (1973), 239-249

MSC:
Primary 35K15

MathSciNet review:
0350204

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The coefficient of the gradient is allowed to be discontinuous but is assumed to satisfy a ``one-sided'' Lipschitz condition. This condition insures the pathwise uniqueness of the underlying Markov process which in turn yields the existence of a unique stable generalized solution of the parabolic equation. If the data is Lipschitz continuous, then so is the solution.

**[1]**Edward D. Conway,*Generalized solutions of linear differential equations with discontinuous coefficients and the uniqueness question for multidimensional quasilinear conservation laws*, J. Math. Anal. Appl.**18**(1967), 238–251. MR**0206474****[2]**Edward D. Conway,*Stochastic equations with discontinuous drift*, Trans. Amer. Math. Soc.**157**(1971), 235–245. MR**0275532**, 10.1090/S0002-9947-1971-0275532-6**[3]**Edward D. Conway,*Stochastic equations with discontinuous drift. II*, Indiana Univ. Math. J.**22**(1972/73), 91–99. MR**0303605****[4]**Edward Conway,*On the total variation of solutions of parabolic equations*, Indiana Univ. Math. J.**21**(1971/1972), 493–503. MR**0289970****[5]**R. Courant,*Methods of mathematical physics*. Vol. II:*Partial differential equations*, Interscience, New York, 1962. MR**25**#4216.**[6]**I. M. Gel′fand,*Some problems in the theory of quasilinear equations*, Amer. Math. Soc. Transl. (2)**29**(1963), 295–381. MR**0153960****[7]**I. I. Gikhman and A. V. Skorokhod,*Introduction to the theory of random processes*, Translated from the Russian by Scripta Technica, Inc, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969. MR**0247660****[8]**R. Z. Has′minskiĭ,*The averaging principle for parabolic and elliptic differential equations and Markov processes with small diffusion*, Teor. Verojatnost. i Primenen.**8**(1963), 3–25 (Russian, with English summary). MR**0161044****[9]**H. P. McKean Jr.,*Stochastic integrals*, Probability and Mathematical Statistics, No. 5, Academic Press, New York-London, 1969. MR**0247684****[10]**R. S. Phillips and Leonard Sarason,*Elliptic-parabolic equations of the second order*, J. Math. Mech.**17**(1967/1968), 891–917. MR**0219868****[11]**James Serrin,*On the differentiability of functions of several variables*, Arch. Rational Mech. Anal.**7**(1961), 359–372. MR**0139700****[12]**D. W. Stroock and S. R. S. Varadhan,*Diffusion processes with continuous coefficients*, Comm. Pure Appl. Math.**22**(1969), 345-400, 479-530. MR**40**#6641; #8130.**[13]**D. Stroock and S. R. S. Varadhan,*On degenerate elliptic-parabolic operators of second order and their associated diffusions*, Comm. Pure Appl. Math.**25**(1972), 651–713. MR**0387812****[14]**Moshe Zakai,*Some moment inequalities for stochastic integrals and for solutions of stochastic differential equations*, Israel J. Math.**5**(1967), 170–176. MR**0225397**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35K15

Retrieve articles in all journals with MSC: 35K15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1973-0350204-X

Keywords:
Degenerate parabolic equation,
discontinuous coefficients,
diffusion processes,
stochastic differential equations

Article copyright:
© Copyright 1973
American Mathematical Society