Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The $ L^p$ norm of sums of translates of a function


Author: Kanter Marek
Journal: Trans. Amer. Math. Soc. 179 (1973), 35-47
MSC: Primary 43A15
DOI: https://doi.org/10.1090/S0002-9947-1973-0361617-4
MathSciNet review: 0361617
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For p not an even integer, $ p > 0$, we prove that knowledge of the $ {L^p}$ norm of all linear combinations of translates of a real valued function in $ {L^p}(R)$ determines the function up to translation and multiplication by $ \pm 1$.


References [Enhancements On Off] (What's this?)

  • [1] S. Bochner, Harmonic analysis and the theory of probability, Univ. of California Press, Berkeley, 1955. MR 17, 273. MR 0072370 (17:273d)
  • [2] J. L. Doob, Stochastic processes, Wiley, New York; Chapman and Hall, London, 1953. MR 15, 445. MR 0058896 (15:445b)
  • [3] K. Itô, The canonical modification of stochastic processes, J. Math. Soc. Japan 20 (1968), 130-150. MR 37 #2306. MR 0226719 (37:2306)
  • [4] K. Kuratowski, Topologie. Vol. 1, PWN, Warsaw, 1948; English transl., Academic Press, New York; PWN, Warsaw, 1966. MR 19, 873; MR 36 #840. MR 0217751 (36:840)
  • [5] P. Levy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1954.
  • [6] M. Schilder, Some structure theorems for the symmetric stable laws, Ann. Math. Statist. 41 (1970), 412-421. MR 40 #8122. MR 0254915 (40:8122)
  • [7] E. Hewitt and K. Stromberg, Real and abstract analysis, Springer-Verlag, New York, 1969. MR 0367121 (51:3363)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A15

Retrieve articles in all journals with MSC: 43A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0361617-4
Keywords: Fourier transform, $ {L^p}$ norm of translates, measures on spheres
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society