Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A Stong-Hattori spectral sequence


Author: David Copeland Johnson
Journal: Trans. Amer. Math. Soc. 179 (1973), 211-225
MSC: Primary 57D90; Secondary 55B20
DOI: https://doi.org/10.1090/S0002-9947-1973-0368040-7
MathSciNet review: 0368040
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {G_ \ast }(\;)$ be the Adams summand of connective K-theory localized at the prime p. Let $ B{P_\ast}(\;)$ be Brown-Peterson homology for that prime. A spectral sequence is constructed with $ {E^2}$ term determined by $ {G_ \ast }(X)$ and whose $ {E^\infty }$ terms give the quotients of a filtration of $ B{P_ \ast }(X)$ where X is a connected spectrum. A torsion property of the differentials implies the Stong-Hattori theorem.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Lectures on generalized cohomology, Category Theory, Homology Theory and Their Applications, III (Battelle Inst. Conf., Seattle, Wash., 1968), Springer, Berlin, 1969, pp. 1-138. MR 40 #4943. MR 0251716 (40:4943)
  • [2] J. F. Adams, Quillen's work on formal groups and complex cobordism, Lecture Notes, University of Chicago, Chicago, Ill., 1970.
  • [3] J. F. Adams and A. Liulevicius, The Hurewicz homomorphism MU and BP, University of Chicago, Chicago, Ill., 1970 (preprint). MR 0353309 (50:5793)
  • [4] N. A. Baas, On bordism theory of manifolds with singularities, Preprint series 1969/70, no. 31, Aarhus Universitet, Aarhus. MR 0346824 (49:11547b)
  • [5] E. H. Brown, Jr., Cohomology theories, Ann. of Math. (2) 75 (1962), 467-484. MR 25 # 1551. MR 0138104 (25:1551)
  • [6] E. H. Brown, Jr. and E. P. Peterson, A spectrum whose $ {Z_p}$ cohomology is the algebra of reduced pth powers, Topology 5 (1966), 149-154. MR 33 #719. MR 0192494 (33:719)
  • [7] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N.J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
  • [8] P. E. Conner and E. E. Floyd, The relation of cobordism to K-theories, Lecture Notes in Math., no. 28, Springer-Verlag, Berlin and New York, 1966. MR 35 #7344. MR 0216511 (35:7344)
  • [9] P. E. Conner and L. Smith, On the complex bordism of finite complexes, Inst. Hautes Études Sci. Publ. Math. No. 37 (1969), 117-221. MR 42 #2473. MR 0267571 (42:2473)
  • [10] -, On the complex bordism of finite complexes. II, J. Differential Geometry 6 (1971), 135-174. MR 0298672 (45:7721)
  • [11] A. Dold, On general cohomology. Chaps. 1-9, Lectures given at the Nordic Summer School in Math. (1968), Matematisk Institut, Aarhus Universitet, Aarhus, 1968. MR 40 #8045. MR 0254838 (40:8045)
  • [12] A. Hattori, Integral characteristic numbers for weakly almost complex manifolds, Topology 5 (1966), 259-280. MR 33 #742. MR 0192517 (33:742)
  • [13] M. Hazewinkel, Constructing formal groups. I. Over $ {Z_{(p)}}$-algebras, Report of the Econometric Institute #7119, Netherlands School of Economics, 1971.
  • [14] D. C. Johnson, Cobordism and connective K-theory, Dissertation, University of Virginia, Charlottesville, Va., 1970.
  • [15] D. C. Johnson and L. Smith, On the relation of complex cobordism to connective K-theory, Proc. Cambridge Philos. Soc. 70 (1971), 19-22. MR 0293619 (45:2696)
  • [16] D. C. Johnson and W. S. Wilson, Projective dimension and Brown-Peterson homology, University of Kentucky, Lexington, Ky., 1972 (preprint). MR 0334257 (48:12576)
  • [17] P. S. Landweber, Complex bordism of classifying spaces, Proc. Amer. Math. Soc. 27 (1971), 175-179. MR 42 #3782. MR 0268885 (42:3782)
  • [18] A. Liulevicius, On the algebra $ B{P_ \ast }(BP)$, University of Chicago, Chicago, Ill., 1971 (preprint).
  • [19] S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122. MR 0349792 (50:2285)
  • [20] L. Smith, A note on the Hattori-Stong Theorem, Illinois J. Math. (to appear). MR 0322852 (48:1213)
  • [21] -, On realizing complex bordism modules. Applications to the stable homotopy of spheres, Amer. J. Math. 92 (1970), 793-856. MR 43 #1186a. MR 0275429 (43:1186a)
  • [22] -, On the relation of connective K-theory to homology, Proc. Cambridge Philos. Soc. 68 (1970), 637-639. MR 41 #7677. MR 0263072 (41:7677)
  • [23] R. E. Stong, Relations among characteristic numbers. I, Topology 4 (1965), 267-281. MR 33 #740. MR 0192515 (33:740)
  • [24] R. Vogt, Boardman's stable homotopy category, Lecture Notes Series, no. 21, Matematisk Institut, Aarhus Universitet, Aarhus, 1970. MR 43 #1187. MR 0275431 (43:1187)
  • [25] R. Zahler, The Adams-Novikov spectral sequence for the spheres, Ann. of Math. (2) 96 (1972), 480-504. MR 0319197 (47:7742)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57D90, 55B20

Retrieve articles in all journals with MSC: 57D90, 55B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0368040-7
Keywords: Atiyah-Hirzebruch-Dold spectral sequence, Stong-Hattori theorem, complex bordism, Brown-Peterson spectrum, connective k-theory
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society