Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Higher derivations and field extensions


Author: R. L. Davis
Journal: Trans. Amer. Math. Soc. 180 (1973), 47-52
MSC: Primary 12F15
DOI: https://doi.org/10.1090/S0002-9947-1973-0318115-3
MathSciNet review: 0318115
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be a field having prime characteristic $ p$. The following conditions on a subfield $ k$ of $ K$ are equivalent: (i) $ { \cap _n}{K^{{p^n}}}(k) = k$ and $ K/k$ is separable. (ii) $ k$ is the field of constants of an infinite higher derivation defined in $ K$. (iii) $ k$ is the field of constants of a set of infinite higher derivations defined in $ K$. If $ K/k$ is separably generated and $ k$ is algebraically closed in $ K$, then $ k$ is the field of constants of an infinite higher derivation in $ K$. If $ K/k$ is finitely generated then $ k$ is the field of constants of an infinite higher derivation in $ K$ if and only if $ K/k$ is regular.


References [Enhancements On Off] (What's this?)

  • [1] R. Baer, Algebraische Theorie der differentierbaren Runktionenkorper. I, S.-B. Heidelberg. Akad. 1927, 15-32.
  • [2] N. Heerema, Derivations and embeddings of a field in its power series ring. II, Michigan Math. J. 8 (1961), 129-134. MR 25 #69. MR 0136601 (25:69)
  • [3] N. Jacobson, Lectures in abstract algebra. Vol. 3: Theory of fields and Galois theory, Van Nostrand, Princeton, N. J., 1964. MR 30 #3087. MR 0172871 (30:3087)
  • [4] S. Lang, Introduction to algebraic geometry, Interscience, New York, 1958. MR 20 #7021. MR 0100591 (20:7021)
  • [5] S. Mac Lane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23-45. MR 1, 3. MR 0000017 (1:3b)
  • [6] M. Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401-410. MR 36 #6391. MR 0223343 (36:6391)
  • [7] M. Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer. Math. Soc. 116 (1965), 435-449. MR 33 #122. MR 0191895 (33:122)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 12F15

Retrieve articles in all journals with MSC: 12F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0318115-3
Keywords: Higher derivation, separable extension, separably generated, regular extension, $ p$-basis
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society