Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On symmetric orders and separable algebras


Author: T. V. Fossum
Journal: Trans. Amer. Math. Soc. 180 (1973), 301-314
MSC: Primary 16A16
DOI: https://doi.org/10.1090/S0002-9947-1973-0318203-1
MathSciNet review: 0318203
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be an algebraic number field, and let $ \Lambda $ be an $ R$-order in a separable $ K$-algebra $ A$, where $ R$ is a Dedekind domain with quotient field $ K$; let $ \Delta $ denote the center of $ \Lambda $. A left $ \Lambda $-lattice is a finitely generated left $ \Lambda $-module which is torsion free as an $ R$-module. For left $ \Lambda $-modules $ M$ and $ N, \operatorname{Ext} _\Lambda ^1(M,N)$ is a module over $ \Delta $. In this paper we examine ideals of $ \Delta $ which are the annihilators of $ \operatorname{Ext} _\Lambda ^1(M,\_)$ for certain classes of left $ \Lambda $-lattices $ M$ related to the central idempotents of $ A$, and we compute these ideals explicitly if $ \Lambda $ is a symmetric $ R$-algebra. For a group algebra, these ideals determine the defect of a block. We then compare these annihilator ideals with another set of ideals of $ \Delta $ which are closely related to the homological different of $ \Lambda $, and which in a sense measure deviation from separability. Finally we show that, for $ \Lambda $ to be separable over $ R$, it is necessary and sufficient that $ \Lambda $ is a symmetric $ R$-algebra, $ \Delta $ is separable over $ R$, and the center of each localization of $ \Lambda $ at the maximal ideals of $ R$ maps onto the center of its residue class algebra.


References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409. MR 22 #12130. MR 0121392 (22:12130)
  • [2] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 #2519. MR 0144979 (26:2519)
  • [3] S. Endo and Y. Watanabe, On separable algebras over a commutative ring, Osaka J. Math. 4 (1967), 233-242. MR 37 #2796. MR 0227211 (37:2796)
  • [4] T. V. Fossum, Characters and centers of symmetric algebras, J. Algebra 16 (1970), 4-13. MR 41 #6894. MR 0262284 (41:6894)
  • [5] H. Jacobinski, On extensions of lattices, Michigan Math. J. 13 (1966), 471-475. MR 34 #4377. MR 0204538 (34:4377)
  • [6] K. W. Roggenkamp, Projective homomorphisms and extensions of lattices, J. Reine Angew. Math. 246 (1971), 41-45. MR 43 #248. MR 0274485 (43:248)
  • [7] K. W. Roggenkamp and V. Huber-Dyson, Lattices over orders, I, Lecture Notes in Math., vol. 115, Springer-Verlag, New York, 1970. MR 0283013 (44:247a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A16

Retrieve articles in all journals with MSC: 16A16


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0318203-1
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society