Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Barycenters, pinnacle points, and denting points


Author: Surjit Singh Khurana
Journal: Trans. Amer. Math. Soc. 180 (1973), 497-503
MSC: Primary 28A40; Secondary 46A05
DOI: https://doi.org/10.1090/S0002-9947-1973-0318438-8
MathSciNet review: 0318438
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some properties of probability measures, on closed convex bounded sets in locally convex spaces, having barycenters are obtained. Also some geometric and measure-theoretic characterizations of pinnacle points are given, and a result about denting points is proved.


References [Enhancements On Off] (What's this?)

  • [1] H. Bauer and H. S. Bear, The part metric in convex sets, Pacific J. Math. 30 (1969), 15-33. MR 43 #859. MR 0275101 (43:859)
  • [2] R. D. Bourgin, Barycenters of measures on certain noncompact convex sets, Trans. Amer. Math. Soc. 154 (1971), 323-340. MR 42 #6582. MR 0271701 (42:6582)
  • [3] G. Choquet, Lectures on analysis. Vols. I, II, III, Benjamin, New York, 1969. MR 40 #3252; #3253; #3254.
  • [4] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [5] J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [6] S. S. Khurana, Measures and barycenters of measures on convex sets in locally convex spaces. I, II, J. Math. Anal. Appl. 27 (1969), 103-115; ibid. 28 (1969), 222-229. MR 39 #4631; #6042. MR 0243309 (39:4631)
  • [7] S. S. Khurana, Characterization of extreme points, J. London Math. Soc. (2) 5 (1972), 102-104. MR 0312199 (47:761)
  • [8] -, Barycenters, extreme points, and strongly extreme points, Math. Ann. 198 (1972), 81-84. MR 0331012 (48:9347)
  • [9] J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. (3) 17 (1967), 139-156. MR 34 #4441. MR 0204602 (34:4441)
  • [10] R. R. Phelps, Lectures on Choquet theorem, Van Nostrand, Princeton, N. J., 1966. MR 33 #1690. MR 0193470 (33:1690)
  • [11] J. D. Pryce, On the representation and some separation properties of semi-extremal subsets of convex sets, Quart. J. Math. Oxford Ser. (2) 20 (1969), 367-382. MR 40 #4719. MR 0251492 (40:4719)
  • [12] M. S. Rieffel, Dentable subsets of Banach spaces with applications to a Radon-Nikodyn theorem, Functional Analysis Proc. Conf. (Univ. of California, Irvine), Thompson Book, Washington, D. C., 1967, pp. 71-77. MR 36 #5668. MR 0222618 (36:5668)
  • [13] H. H. Schaeffer, Topological vector spaces, Macmillan, New York, 1966. MR 33 #1689. MR 0193469 (33:1689)
  • [14] D. Sondermann, Masse auf lokalbeschränkten Räumen, Ann. Inst. Fourier (Grenoble) 19 (1970), fasc. 2, 33-113. MR 41 #5587. MR 0260967 (41:5587)
  • [15] F. Topsøe, Measure and topology, Lecture Notes in Math., vol. 133, Springer-Verlag, New York, 1970.
  • [16] V. S. Varadarajan, Measures on topological spaces, Mat. Sb. 55 (97) (1961), 35-100; English transl., Amer. Math. Soc. Transl. (2) 48 (1965), 161-220. MR 26 #6342. MR 0148838 (26:6342)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A40, 46A05

Retrieve articles in all journals with MSC: 28A40, 46A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0318438-8
Keywords: Closed bounded sets, measures and barycenters of measures, $ \tau $-smooth measures, tight measures, pinnacle points, part of a convex set, denting points
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society