ADDENDUM TO "DIFFERENTIAL-BOUNDARY OPERATORS"

BY

ALLAN M. KRALL

ABSTRACT. The proof of a lemma and the statement of another were omitted from an earlier paper. This corrects that omission.

Within the paper Differential-boundary operators, Trans. Amer. Math. Soc. 154 (1971), 429–458, the proof of Lemma 6.4 and the statement of Lemma 6.5 were inadvertently omitted. They are as follows.

Lemma 6.4. \(\lim_{Re(\lambda) \to \infty} \hat{H}(x) = 0 \) uniformly for all \(x \) in \([0,1]\).

Proof.

\[
\| \int_0^x e^{-\lambda u} H(u) \, du \| \leq \int_0^x e^{-Re(\lambda)u} \|H(u)\| \, du,
\]

\[
\leq \left[\int_0^1 e^{-2Re(\lambda)u} \, du \right]^\frac{1}{2} \left[\int_0^1 \|H(u)\|^2 \, du \right]^\frac{1}{2},
\]

\[
\leq \left[(e^{-2Re(\lambda)} - 1)/(-2Re(\lambda)) \right]^\frac{1}{2} \left[\int_0^1 \|H(u)\|^2 \, du \right]^\frac{1}{2},
\]

which approaches 0 as \(Re(\lambda) \to \infty \).

Lemma 6.5. \(\lim_{Re(\lambda) \to \infty} e^{\lambda x}[\hat{H}(1) - \hat{H}(x)] = 0 \) uniformly for all \(x \) in \([0,1]\).

The proof of Lemma 6.5 follows the statement of Lemma 6.4 in the text. The two \(\hat{H} \)'s at the beginning should be \(\hat{H} \).

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802

Received by the editors January 18, 1973.

AMS (MOS) subject classifications (1970). Primary 34B05, 34B10, 34B25; Secondary 47A50, 47B40, 47E05.

Key words and phrases. Operator, differential operator, boundary value problem, differential system, selfadjoint, nonselfadjoint, Sturm-Liouville problem, adjoint, eigenvalue, spectrum, spectral resolution.