Optimal arcs and the minimum value function in problems of Lagrange
Author:
R. Tyrrell Rockafellar
Journal:
Trans. Amer. Math. Soc. 180 (1973), 5383
MSC:
Primary 49A10
MathSciNet review:
0320852
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Existence theorems are proved for basic problems of Lagrange in the calculus of variations and optimal control theory, in particular problems for arcs with both endpoints fixed. Emphasis is placed on deriving continuity and growth properties of the minimum value of the integral as a function of the endpoints of the arc and the interval of integration. Control regions are not required to be bounded. Some results are also obtained for problems of Bolza. Conjugate convex functions and duality are used extensively in the development, but the problems themselves are not assumed to be especially ``convex". Constraints are incorporated by the device of allowing the Lagrangian function to be extendedrealvalued. This necessitates a new approach to the question of what technical conditions of regularity should be imposed that will not only work, but will also be flexible and general enough to meet the diverse applications. One of the underlying purposes of the paper is to present an answer to this question.
 [1]
Lamberto
Cesari, Existence theorems for weak and usual
optimal solutions in Lagrange problems with unilateral constraints.
I, Trans. Amer. Math. Soc. 124 (1966), 369–412. MR 0203542
(34 #3392), http://dx.doi.org/10.1090/S00029947196602035421
 [2]
Lamberto
Cesari, Closure, lower closure, and semicontinuity theorems in
optimal control., SIAM J. Control 9 (1971),
287–315. MR 0287401
(44 #4607)
 [3]
A.
F. Filippov, On certain questions in the theory of optimal
control, J. SIAM Control Ser. A 1 (1962),
76–84. MR
0149985 (26 #7469)
 [4]
E.
B. Lee and L.
Markus, Optimal control for nonlinear processes, Arch.
Rational Mech. Anal. 8 (1961), 36–58. MR 0128571
(23 #B1610)
 [5]
E. J. McShane, Existence theorems for ordinary problems of the calculus of variation, Ann. Scuola Norm. Sup. Pisa 3 (1934), 181211.
 [6]
M. Nagumo, Über die gleichmässige Summierbarkeit und ihre Anwendung auf ein Variations problem, Japan. J. Math. 6 (1929), 178182.
 [7]
Czesław
Olech, Existence theorems for optimal
problems with vectorvalued cost function, Trans. Amer. Math. Soc. 136 (1969), 159–180. MR 0234338
(38 #2655), http://dx.doi.org/10.1090/S00029947196902343385
 [8]
Czesław
Olech, Existence theorems for optimal control problems involving
multiple integrals, J. Differential Equations 6
(1969), 512–526. MR 0246184
(39 #7488)
 [9]
R.
T. Rockafellar, Existence and duality theorems for
convex problems of Bolza, Trans. Amer. Math.
Soc. 159 (1971),
1–40. MR
0282283 (43 #7995), http://dx.doi.org/10.1090/S00029947197102822830
 [10]
R.
Tyrrell Rockafellar, State constraints in convex control problems
of Bolza, SIAM J. Control 10 (1972), 691–715.
MR
0324505 (48 #2857)
 [11]
R.
T. Rockafellar, Measurable dependence of convex sets and functions
on parameters, J. Math. Anal. Appl. 28 (1969),
4–25. MR
0247019 (40 #288)
 [12]
R.
Tyrrell Rockafellar, Convex integral functionals and duality,
Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res.
Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York,
1971, pp. 215–236. MR 0390870
(52 #11693)
 [13]
R.
Tyrrell Rockafellar, Convex analysis, Princeton Mathematical
Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
(43 #445)
 [14]
Emilio
Roxin, The existence of optimal controls, Michigan Math. J.
9 (1962), 109–119. MR 0136844
(25 #305)
 [15]
L. Tonneli, Sugli integrali del calcolo delle variazioni in forma ordinaria, Ann. Scuola Norm. Sup. Pisa 3 (1934), 401450.
 [1]
 L. Cesari, Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. I, Trans. Amer. Math. Soc. 124 (1966), 369412. MR 34 #3392. MR 0203542 (34:3392)
 [2]
 , Closure, lower closure, and semicontinuity theorems in optimal control, SIAM J. Control 9 (1971), 287315. MR 44 #4607. MR 0287401 (44:4607)
 [3]
 A. F. Filippov, On certain questions in the theory of optimal control, Vestnik Moskov. Univ. Ser. Mat. Meh. Astronom. Fiz. Him. 1959, no. 2, 2532; English transl., J. SIAM Control Ser. A 1 (1962), 7684. MR 22 #13373; MR 26 #7469. MR 0149985 (26:7469)
 [4]
 E. B. Lee and L. Markus, Optimal control for nonlinear processes, Arch. Rational Mech. Anal. 8 (1961), 3658. MR 23 #B1610. MR 0128571 (23:B1610)
 [5]
 E. J. McShane, Existence theorems for ordinary problems of the calculus of variation, Ann. Scuola Norm. Sup. Pisa 3 (1934), 181211.
 [6]
 M. Nagumo, Über die gleichmässige Summierbarkeit und ihre Anwendung auf ein Variations problem, Japan. J. Math. 6 (1929), 178182.
 [7]
 C. Olech, Existence theorems for optimal problems with vectorvalued cost functions, Trans. Amer. Math. Soc. 136 (1969), 159180. MR 38 #2655. MR 0234338 (38:2655)
 [8]
 , Existence theorems for optimal control problems involving multiple integrals, J. Differential Equations 6 (1969), 512526. MR 39 #7488. MR 0246184 (39:7488)
 [9]
 R. T. Rockafellar, Existence and duality theorems for convex problems of Bolza, Trans. Amer. Math. Soc. 159 (1971), 140. MR 43 #7995. MR 0282283 (43:7995)
 [10]
 , State constraints in convex problems of Bolza, SIAM J. Control 10 (1972), 691715. MR 0324505 (48:2857)
 [11]
 , Measurable dependence of convex sets and functions on parameters, J. Math. Anal. Appl. 28 (1969), 425. MR 40 #288. MR 0247019 (40:288)
 [12]
 R. T. Rockafellar, Convex integral functionals and duality, Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, pp. 215236. MR 0390870 (52:11693)
 [13]
 , Convex analysis, Princeton, Univ. Press, Princeton Math. Series, no 28, Princeton, N. J., 1970. MR 43 #445. MR 0274683 (43:445)
 [14]
 E. O. Roxin, The existence of optimal controls, Michigan Math. J. 9 (1962), 109119. MR 25 #305. MR 0136844 (25:305)
 [15]
 L. Tonneli, Sugli integrali del calcolo delle variazioni in forma ordinaria, Ann. Scuola Norm. Sup. Pisa 3 (1934), 401450.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
49A10
Retrieve articles in all journals
with MSC:
49A10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197303208521
PII:
S 00029947(1973)03208521
Keywords:
Optimal control,
problems of Lagrange,
problems of Bolza,
existence of solutions,
minimum value function,
nonfinite Lagrangians,
conjugate convex functions,
unbounded controls
Article copyright:
© Copyright 1973
American Mathematical Society
