Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ P$-commutative Banach $ \sp{\ast} $-algebras


Author: Wayne Tiller
Journal: Trans. Amer. Math. Soc. 180 (1973), 327-336
MSC: Primary 46K05
DOI: https://doi.org/10.1090/S0002-9947-1973-0322515-5
MathSciNet review: 0322515
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a complex $ ^ \ast $-algebra. If $ f$ is a positive functional on $ A$, let $ {I_f} = \{ x \in A:f(x^ \ast x) = 0\} $ be the corresponding left ideal of $ A$. Set $ P = \cap {I_f}$, where the intersection is over all positive functionals on $ A$. Then $ A$ is called $ P$-commutative if $ xy - yx \in P$ for all $ x,y \in A$. Every commutative $ ^ \ast $-algebra is $ P$-commutative and examples are given of noncommutative $ ^ \ast $-algebras which are $ P$-commutative. Many results are obtained for $ P$-commutative Banach $ ^ \ast $-algebras which extend results known for commutative Banach $ ^ \ast $-algebras. Among them are the following: If $ {A^2} = A$, then every positive functional on $ A$ is continuous. If $ A$ has an approximate identity, then a nonzero positive functional on $ A$ is a pure state if and only if it is multiplicative. If $ A$ is symmetric, then the spectral radius in $ A$ is a continuous algebra seminorm.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Baker and J. S. Pym, A remark on continuous bilinear mappings, Proc. Edinburgh Math. Soc. 17 (1971), 245-248. MR 0303291 (46:2429)
  • [2] J. Dixmier, Les $ {C^ \ast }$-algèbres et leurs représentations, 2ième éd., Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1969. MR 39 #7442. MR 0246136 (39:7442)
  • [3] J. W. M. Ford, A square root lemma for Banach $ ^ \ast $-algebras, J. London Math. Soc. 42 (1967), 521-522. MR 35 #5950. MR 0215107 (35:5950)
  • [4] J. W. M. Ford, Subalgebras of Banach algebras generated by semigroups, Ph.D. Dissertation, Newcastle upon Tyne, 1966.
  • [5] I. S. Murphy, Continuity of positive linear functionals on Banach $ ^ \ast $-algebras, Bull. London Math. Soc. 1 (1969), 171-173. MR 40 #3320. MR 0250079 (40:3320)
  • [6] M. A. Naĭmark, Normed rings, ``Nauka", Moscow, 1968; English transl., Wolters-Noordhoff, 1970. MR 0355601 (50:8075)
  • [7] C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #5903. MR 0115101 (22:5903)
  • [8] S. Shirali, Representability of positive functionals, J. London Math. Soc. (2) 3 (1971), 145-150. MR 43 #2517. MR 0276777 (43:2517)
  • [9] N. Th. Varopoulos, Continuité des formes linéaires positives sur une algèbre de Banach avec involution, C. R. Acad. Sci. Paris 258 (1964), 1121-1124. MR 28 #4387. MR 0161179 (28:4387)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46K05

Retrieve articles in all journals with MSC: 46K05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0322515-5
Keywords: Banach $ ^ \ast $-algebta, positive functional, $ ^ \ast $-representation, multiplicative linear functional, symmetric $ ^ \ast $-algebra
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society