Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hermitian vector bundles and value distribution for Schubert cycles


Author: Michael J. Cowen
Journal: Trans. Amer. Math. Soc. 180 (1973), 189-228
MSC: Primary 32H25
DOI: https://doi.org/10.1090/S0002-9947-1973-0333252-5
MathSciNet review: 0333252
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: R. Bott and S. S. Chern used the theory of characteristic differential forms of a holomorphic hermitian vector bundle to study the distribution of zeroes of a holomorphic section. In this paper their methods are extended to study how often a holomorphic mapping into a Grassmann manifold hits Schubert cycles of fixed type.


References [Enhancements On Off] (What's this?)

  • [1] T. Bloom and M. Herrera, De Rham cohomology of an analytic space, Invent. Math. 7 (1969), 275-296. MR 40 #1601. MR 0248349 (40:1601)
  • [2] R. Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1965), 71-112. MR 32 #3070. MR 0185607 (32:3070)
  • [3] S. S. Chern, Complex manifolds without potential theory, Van Nostrand Math. Studies, no. 15, Van Nostrand, Princeton, N. J., 1967. MR 37 #940. MR 0225346 (37:940)
  • [4] H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR 41 #1976. MR 0257325 (41:1976)
  • [5] H. Flanders, Differential forms with applications to the physical sciences, Academic Press, New York, 1963. MR 28 #5397. MR 0162198 (28:5397)
  • [6] P. A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 185-251. MR 41 #2717. MR 0258070 (41:2717)
  • [7] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-203. MR 33 #7333. MR 0199184 (33:7333)
  • [8] J. Hirschfelder, The first main theorem of value distribution in several variables, Invent Math. 8 (1969), 1-33. MR 39 #7146. MR 0245840 (39:7146)
  • [9] W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry. Vol. II. Book III: General theory of algebraic varieties in projective space. Book IV: Quadrics and Grassmann varieties, Cambridge Univ. Press, Cambridge, 1952. MR 13, 972. MR 0048065 (13:972c)
  • [10] J. King, The currents defined by analytic varieties, Acta Math. 127 (1971), 185-220. MR 0393550 (52:14359)
  • [11] P. Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239-262. MR 20 #2465. MR 0095967 (20:2465)
  • [12] W. Stoll, Value distribution of holomorphic maps into compact complex manifolds, Lecture Notes in Math., vol. 135, Springer-Verlag, Berlin and New York, 1970. MR 42 #2040. MR 0267138 (42:2040)
  • [13] G. Stolzenberg, Volumes, limits, and extensions of analytic varieties, Lecture Notes in Math., no. 19, Springer-Verlag, Berlin and New York, 1966. MR 34 #6156. MR 0206337 (34:6156)
  • [14] H. Wu, Remarks on the first main theorem in equidistribution theory. I-IV, J. Differential Geometry 2 (1968), 197-202, 369-384; ibid. 3 (1969), 83-94, 433-466. MR 43 #2247 a, b, c, d. MR 0276500 (43:2247a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32H25

Retrieve articles in all journals with MSC: 32H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0333252-5
Keywords: First Main Theorem, Schubert cycle, Hermitian vector bundle, refined Chern class, Chern duality, ample vector bundle
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society