Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Hermitian vector bundles and value distribution for Schubert cycles

Author: Michael J. Cowen
Journal: Trans. Amer. Math. Soc. 180 (1973), 189-228
MSC: Primary 32H25
MathSciNet review: 0333252
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: R. Bott and S. S. Chern used the theory of characteristic differential forms of a holomorphic hermitian vector bundle to study the distribution of zeroes of a holomorphic section. In this paper their methods are extended to study how often a holomorphic mapping into a Grassmann manifold hits Schubert cycles of fixed type.

References [Enhancements On Off] (What's this?)

  • [1] Thomas Bloom and Miguel Herrera, De Rham cohomology of an analytic space, Invent. Math. 7 (1969), 275–296. MR 0248349
  • [2] Raoul Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1965), 71–112. MR 0185607
  • [3] S. S. Chern, Complex manifolds without potential theory, Van Nostrand Mathematical Studies, No. 15, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225346
  • [4] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
  • [5] Harley Flanders, Differential forms with applications to the physical sciences, Academic Press, New York-London, 1963. MR 0162198
  • [6] Phillip A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 185–251. MR 0258070
  • [7] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184
  • [8] John J. Hirschfelder, The first main theorem of value distribution in several variables, Invent. Math. 8 (1969), 1–33. MR 0245840
  • [9] W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry. Vol. II. Book III: General theory of algebraic varieties in projective space. Book IV: Quadrics and Grassmann varieties, Cambridge, at the University Press, 1952. MR 0048065
  • [10] James R. King, The currents defined by analytic varieties, Acta Math. 127 (1971), no. 3-4, 185–220. MR 0393550
  • [11] Pierre Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239–262 (French). MR 0095967
  • [12] Wilhelm Stoll, Value distribution of holomorphic maps into compact complex manifolds., Lecture Notes in Mathematics, Vol. 135, Springer-Verlag, Berlin-New York, 1970. MR 0267138
  • [13] Gabriel Stolzenberg, Volumes, limits, and extensions of analytic varieties, Lecture Notes in Mathematics, No. 19, Springer-Verlag, Berlin-New York, 1966. MR 0206337
  • [14] H. Wu, Remarks on the first main theorem in equidistribution theory. I, J. Differential Geometry 2 (1968), 197–202. MR 0276500

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32H25

Retrieve articles in all journals with MSC: 32H25

Additional Information

Keywords: First Main Theorem, Schubert cycle, Hermitian vector bundle, refined Chern class, Chern duality, ample vector bundle
Article copyright: © Copyright 1973 American Mathematical Society