Maximal regular right ideal space of a primitive ring. II
Authors:
Kwangil Koh and Hang Luh
Journal:
Trans. Amer. Math. Soc. 180 (1973), 127141
MSC:
Primary 16A20
MathSciNet review:
0338049
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: If is a ring, let be the set of maximal regular right ideals of . For each nonempty subset of , define the hull of to be the set and the support of to be the complement of the hull of . Topologize by taking the supports of right ideals of as a subbase. If is a right primitive ring, then is homeomorphic to an open subset of a compact space of a right primitive ring , and is a discrete space if and only if is a compact Hausdorff space if and only if either is a finite ring or a division ring. Call a closed subset of a line if is the hull of for some two distinct elements and in . If is a semisimple ring, then every line contains an infinite number of points if and only if either is a division ring or is a dense ring of linear transformations of a vector space of dimension two or more over an infinite division ring such that every pair of simple (right) modules are isomorphic.
 [1]
Nathan
Jacobson, Structure of rings, American Mathematical Society
Colloquium Publications, Vol. 37. Revised edition, American Mathematical
Society, Providence, R.I., 1964. MR 0222106
(36 #5158)
 [2]
R.
E. Johnson, Structure theory of faithful rings. I. Closure
operations on lattices. II. Restricted rings, Trans. Amer. Math. Soc.
84 (1957), 508–522, 523–544. MR 0084493
(18,869d)
 [3]
Kwangil
Koh and Jiang
Luh, Maximal regular right ideal space of a
primitive ring, Trans. Amer. Math. Soc. 170 (1972), 269–277.
MR
0304413 (46 #3548), http://dx.doi.org/10.1090/S00029947197203044135
 [4]
I.
G. Macdonald, Algebraic geometry. Introduction to schemes, W.
A. Benjamin, Inc., New YorkAmsterdam, 1968. MR 0238845
(39 #205)
 [5]
G.
O. Michler and O.
E. Villamayor, On rings whose simple modules are injective,
ComptesRendus des Journées d’Algèbre Pure et
Appliquée (Univ. Sci. Tech. Languedoc, Montpellier, 1971), Univ.
Sci. Tech. Languedoc, Montpellier, 1971, pp. 212–238. MR 0332881
(48 #11206)
 [6]
J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. U. S. A. 22 (1936), 707713.
 [1]
 N. Jacobson, Structure of rings, 2nd rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R. I., 1964. MR 36 #5158. MR 0222106 (36:5158)
 [2]
 R. E. Johnson, Structure theory of faithful rings. II. Restricted rings, Trans. Amer. Math. Soc. 84 (1957), 523544. MR 18, 869. MR 0084493 (18:869d)
 [3]
 K. Koh and J. Luh, Maximal regular right ideal space of a primitive ring, Trans. Amer. Math. Soc. 170 (1972), 269277. MR 0304413 (46:3548)
 [4]
 I. G. MacDonald, Algebraic geometry. Introduction to schemes, Benjamin, New York, 1968. MR 39 #205. MR 0238845 (39:205)
 [5]
 G. O. Michler and O.E. Villamayor, On rings whose simple modules are injective (to appear). MR 0332881 (48:11206)
 [6]
 J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. U. S. A. 22 (1936), 707713.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
16A20
Retrieve articles in all journals
with MSC:
16A20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197303380498
PII:
S 00029947(1973)03380498
Keywords:
Maximal regular right ideals,
socle,
irreducible spaces,
compact Hausdorff spaces,
lines,
hyperplanes,
support
Article copyright:
© Copyright 1973 American Mathematical Society
