Maximal regular right ideal space of a primitive ring. II

Authors:
Kwangil Koh and Hang Luh

Journal:
Trans. Amer. Math. Soc. **180** (1973), 127-141

MSC:
Primary 16A20

DOI:
https://doi.org/10.1090/S0002-9947-1973-0338049-8

MathSciNet review:
0338049

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If is a ring, let be the set of maximal regular right ideals of . For each nonempty subset of , define the *hull* of to be the set and the *support of* to be the complement of the hull of . Topologize by taking the supports of right ideals of as a subbase. If is a right primitive ring, then is homeomorphic to an open subset of a compact space of a right primitive ring , and is a discrete space if and only if is a compact Hausdorff space if and only if either is a finite ring or a division ring. Call a closed subset of a *line* if is the hull of for some two distinct elements and in . If is a semisimple ring, then every line contains an infinite number of points if and only if either is a division ring or is a dense ring of linear transformations of a vector space of dimension two or more over an infinite division ring such that every pair of simple (right) -modules are isomorphic.

**[1]**Nathan Jacobson,*Structure of rings*, American Mathematical Society Colloquium Publications, Vol. 37. Revised edition, American Mathematical Society, Providence, R.I., 1964. MR**0222106****[2]**R. E. Johnson,*Structure theory of faithful rings. I. Closure operations on lattices. II. Restricted rings*, Trans. Amer. Math. Soc.**84**(1957), 508–522, 523–544. MR**0084493**, https://doi.org/10.1090/S0002-9947-1957-0084493-7**[3]**Kwangil Koh and Jiang Luh,*Maximal regular right ideal space of a primitive ring*, Trans. Amer. Math. Soc.**170**(1972), 269–277. MR**0304413**, https://doi.org/10.1090/S0002-9947-1972-0304413-5**[4]**I. G. Macdonald,*Algebraic geometry. Introduction to schemes*, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR**0238845****[5]**G. O. Michler and O. E. Villamayor,*On rings whose simple modules are injective*, Comptes-Rendus des Journées d’Algèbre Pure et Appliquée (Univ. Sci. Tech. Languedoc, Montpellier, 1971) Univ. Sci. Tech. Languedoc, Montpellier, 1971, pp. 212–238. MR**0332881****[6]**J. von Neumann,*On regular rings*, Proc. Nat. Acad. Sci. U. S. A.**22**(1936), 707-713.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16A20

Retrieve articles in all journals with MSC: 16A20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1973-0338049-8

Keywords:
Maximal regular right ideals,
socle,
irreducible spaces,
compact Hausdorff spaces,
lines,
hyperplanes,
support

Article copyright:
© Copyright 1973
American Mathematical Society