Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multipliers and linear functionals for the class $ N\sp{+}$


Author: Niro Yanagihara
Journal: Trans. Amer. Math. Soc. 180 (1973), 449-461
MSC: Primary 30A78
DOI: https://doi.org/10.1090/S0002-9947-1973-0338382-X
MathSciNet review: 0338382
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Multipliers for the classes $ {H^p}$ are studied recently by several authors, see Duren's book, Theory of $ {H^p}$ spaces, Academic Press, New York, 1970. Here we consider corresponding problems for the class $ {N^ + }$ of holomorphic functions in the unit disk such that

$\displaystyle \mathop {\lim }\limits_{r \to 1} \int_0^{2\pi } {{{\log }^ + }} \... ...= \int_0^{2\pi } {{{\log }^ + }\vert f({e^{i\theta }})\vert} d\theta < \infty .$

Our results are:

1. $ {N^ + }$ is an $ F$-space in the sense of Banach with the distance function

$\displaystyle \rho (f,g) = \frac{1}{{2\pi }}\int_0^{2\pi } {\log (1 + \vert f({e^{i\theta }}) - g({e^{i\theta }})\vert)} d\theta .$

2. A complex sequence $ \Lambda = \{ {\lambda _n}\} $ is a multiplier for $ {N^ + }$ into $ {H^q}$ for a fixed $ q,0 < q < \infty $, if and only if $ {\lambda _n} = O(\exp [ - c\sqrt n ])$ for a positive constant $ c$.

3. A continuous linear functional $ \phi $ on the space $ {N^ + }$ is represented by a holomorphic function $ g(z) = \Sigma {b_n}{z^n}$ which satisfies $ {b_n} = O(\exp [ - c\sqrt n ])$ for a positive constant $ c$.

Conversely, such a function $ g(z) = \Sigma {b_n}{z^n}$ defines a continuous linear functional on the space $ {N^ + }$.


References [Enhancements On Off] (What's this?)

  • [1] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [2] P. L. Duren, On the multipliers of $ {H^p}$ spaces, Proc. Amer. Math. Soc. 22 (1969), 24-27. MR 39 #2990. MR 0241651 (39:2990)
  • [3] -, Theory of $ {H^p}$ spaces, Pure and Appl. Math., vol. 38, Academic Press, New York, 1970. MR 42 #3552.
  • [4] P. L. Duren, B. W. Romberg and A. L. Shields, Linear functionals on $ {H^p}$ spaces with $ 0 < p < 1$, J. Reine Angew. Math. 238 (1969), 32-60. MR 41 #4217. MR 0259579 (41:4217)
  • [5] T. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969. MR 0410387 (53:14137)
  • [6] T. Gamelin and G. Lumer, Theory of abstract Hardy spaces and the universal Hardy class, Advances in Math. 2 (1968), 118-174. MR 37 #1982. MR 0226392 (37:1982)
  • [7] I. I. Privalov, Boundary properties of analytic functions, GITTL, Moscow, 1950; German transl., VEB Deutscher Verlag, Berlin, 1956. MR 13, 926; MR 18, 727. MR 0047765 (13:926h)
  • [8] N. Yanagihara, Mean growth and Taylor coefficients of some classes of functions (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A78

Retrieve articles in all journals with MSC: 30A78


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0338382-X
Keywords: The class $ {N^ + },{N^ + }$, zV as an $ F$-space in the sense of Banach, multiplier as a closed operator, local unboundedness of the space $ {N^ + }$, representations of continuous linear functionals on the space $ {N^ + }$
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society