ADDENDUM TO "MODULAR REPRESENTATIONS OF METABELIAN GROUPS"

BY

B. G. BASMAJI

In this note the principal indecomposable modules of \(\Omega G \) are determined where \(G \) is a finite metabelian group and \(\Omega \) is an algebraically closed field with characteristic \(p \) dividing \(|G|\). The notations are the same as of [1].

Let \(P \) be a \(p \)-Sylow subgroup of \(K(H) \). Since \(K(H)/K(H)' \) is abelian, there exist subgroups \(V_1 \supseteq K(H)' \) and \(V_2 \supseteq K(H)' \) such that \(K(H)/K(H)' \cong V_1/K(H)' \times V_2/K(H)' \), \(V_1/K(H)' \) is a \(p \)-group and \(p \nmid |V_2/K(H)'| \). Let \(P_1 \) be a \(p \)-sylow subgroup of \(V_2 \), then \(P_1 \subseteq K(H)' \) and thus \(P_1 \) is normal in \(V_2 \). Hence there exists a subgroup \(V \) of \(V_2 \) such that \(V = P_1 \circ V \), the semidirect product, and \(p \nmid |V| \).

Clearly \(K(H) = \langle P, V \rangle \), \(P \cap V = 1 \), and \(|V| = |K(H)/P| \).

For each \(K(H) \), \(A/H \) cyclic and \(p \nmid |A/H| \), fix a subgroup \(V \) with the above properties. Let \(\tau' \) be a linear representation of \(K(H) \) with \(\ker \tau' \cap A = H \) such that \(\tau_K' \) is conjugate to \(\sigma \) where \(K = K(A) \). Then \(\tau'^{G} \) is irreducible and \(\tau'^{G} \in B(\sigma, H) \). Let \(x \in G \) and define

\[
e_x(\tau') = \frac{1}{|V|} \sum_{a \in V} \tau'(x^{-1}a^{-1})a
\]

and \(e_x(\tau') = e(\tau') \). We prove

Theorem 4. All the principal indecomposable modules of \(\Omega G \) are given by the collection of the ideals \(\Omega G e(\tau') \) with \(\tau' \in \bigcup M(H, K(H)) \) where the union is over all subgroups \(H \) of \(A \) such that \(A/H \) is cyclic and \(p \nmid |A/H| \).

Proof. Let \(T' \) be an ordinary representation of \(K(H) \) such that \(\ker \tau' = \ker T' \supseteq P \) and for all \(a \in K(H) \), \(T'(a) = \tau'(a) \), and \(T'_V \) be the restriction of \(T' \) to \(V \). Define \(T''(x)(a) = T'(x^{-1}ax) \) where \(x \in G \). Since \(\ker T' \supseteq P \), it follows that \(T'_V \neq T''_V(x) \) if \(x \notin K(H) \). Define

\[
e_x(T') = \frac{1}{|V|} \sum_{a \in V} T'(x^{-1}a^{-1})a;
\]

then \(e_x(T') \) are minimal indempotents of \(\Omega V \) and \(e_x(T') \cdot e_y(T') = 0 \) if and only if \(xK(H) \neq yK(H) \). Similarly, if \(\tau'_1 \) is another linear representation of \(K(H) \) not conjugate to \(\tau' \) and \(\ker \tau'_1 \cap A = H \), and if \(T'_1 \) is similarly defined then

Received by the editors August 27, 1971.

Copyright © 1973, American Mathematical Society
\[e_x(T') \cdot e_z(T) = 0 \text{ for any } x \text{ and } z \text{ in } G. \]

Now \(e(T') = e_1(T') \) is also an idempotent of \(G \). We have \(\bar{Q}G \otimes_{QV} \bar{Q}Ve(T') \cong \bar{Q}Ge(T') \), since from the definitions of tensor products and balanced maps there is a \(\bar{Q}G \)-homomorphism of \(\bar{Q}G \otimes_{QV} \bar{Q}Ve(T') \) onto \(\bar{Q}Ge(T') \), and both modules are of \(\bar{Q}-\text{dimension } |G|/|V| = p^a|G/K(H)|, p^a||K(H)||, \) with \(b \) runs over a set of coset representatives of \(V \) in \(G \) a \(\bar{Q} \)-basis for \(\bar{Q}Ge(T') \). Hence \(\bar{Q}Ge(T') \) affords \((\tau')^G \). Thus we have \(e_x(r') \cdot e_y(r') = 0 \) if and only if \(xK(H) \neq yK(H) \), \(e_x(r') \cdot e_z(r') = 0 \) if \(\ker r' \cap A = H \) and \(r' \) is not conjugate to \(r' \), and \(\bar{Q}Ge(r') \), a direct summand of \(\bar{Q}G \), affording \((\tau')^G \) of degree \(p^a|G/K(H)| \). If \(\chi \) is the character of \(T' \), then from the Frobenius reciprocity theorem, \(1 = (\chi_V, (\chi^G)_V) = (\chi^G_V, \chi^G) \), or \(\tau^G \) is a composition factor of \((\tau')^G \). Assume \(\bar{Q}Ge(r') = U_1 \oplus \cdots \oplus U_r, U_i \) some indecomposable components of \(\bar{Q}G \), then \(\tau^G \) is afforded by a composition factor of some \(U_i \) or \(U_i \) belongs to \(B(\sigma, H) \). But from Theorem 3 of [1], \(U_i \) is of degree \(p^a|G/K(H)| \) and hence \(U_i = \bar{Q}Ge(r') \) or \(\bar{Q}Ge(r') \), and \((\tau')^G \), indecomposable.

Each \(\tau^G \in B(\sigma, H) \) is associated with \(|G/K(H)| \) (\(= \text{degree of } \tau^G \)) distinct indecomposable components of \(\bar{Q}G \), namely \(\bar{Q}Ge(x), x \in G/K(H) \). Moreover, if \(\bar{Q}Ge(r') \) belongs to \(B(\sigma_1, H_1) \), where \(B(\sigma_1, H_1) \) is a block different from \(B(\sigma, H) \), then \(e(r') \cdot e(r') = 0 \). Now the result follows by applying Theorems 1 and 2, which completes the proof.

Define
\[e(\sigma, H) = \sum_{x \in G/K(H)} e_x(T') \]
where the summation \(\Sigma' \) is over all distinct \(\tau^G \in B(\sigma, H) \). We have

Corollary. All the indecomposable two-sided ideals (blocks) of \(\bar{Q}G \) are given by the collection of the ideals \(\bar{Q}Ge(\sigma, H) \) where \(H \) runs over all nonconjugate subgroups of \(A, A/H \) cyclic, \(p^a|A/H| \), and \(\sigma \) runs over the elements of \(C(H, K(A)) \).

BIBLIOGRAPHY