DIFFERENTIAL GEOMETRIC STRUCTURES ON PRINCIPAL TOROIDAL BUNDLES

BY

DAVID E. BLAIR, GERALD D. LUDDEN AND KENTARO YANO

ABSTRACT. Under an assumption of regularity a manifold with an f-structure satisfying certain conditions analogous to those of a Kähler structure admits a fibration as a principal toroidal bundle over a Kähler manifold. In some natural special cases, additional information about the bundle space is obtained. Finally, curvature relations between the bundle space and the base space are studied.

Let M^{2n+s} be a C^∞ manifold of dimension $2n + s$. If the structural group of M^{2n+s} is reducible to $U(n) \times O(s)$, then M^{2n+s} is said to have an f-structure of rank $2n$. If there exists a set of 1-forms $\{\eta^1, \cdots, \eta^s\}$ satisfying certain properties described in §1, then M^{2n+s} is said to have an f-structure with complemented frames. In [1] it was shown that a principal toroidal bundle over a Kähler manifold with a certain connection has an f-structure with complemented frames and $d\eta^1 = \cdots = d\eta^s$ as the fundamental 2-form. On the other hand, the following theorem is proved in §2 of this paper.

Theorem 1. Let M^{2n+s} be a compact connected manifold with a regular normal f-structure. Then M^{2n+s} is the bundle space of a principal toroidal bundle over a complex manifold $N^{2n} (= M^{2n+s}/\mathbb{H})$. Moreover, if M^{2n+s} is a K-manifold, then N^{2n} is a Kähler manifold.

After developing a theory of submersions in §3, we discuss in §4 further properties of this fibration in the cases where $d\eta^x = 0, x = 1, \cdots, s$ and $d\eta^x = \alpha^xF, F$ being the fundamental 2-form of the f-structure.

Finally in §5 we study the relation between the curvature of M^{2n+s} and N^{2n}.

Since $U(n) \times O(s) \subset O(2n + s)$, M^{2n+s} is a new example of a space in the class provided by Chern in his generalization of Kähler geometry [4]. S. I. Goldberg's paper [5] also suggests the study of framed manifolds as bundle spaces over Kähler manifolds with parallelisable fibers.

1. Normal f-structures. Let M^{2n+s} be a $2n + s$-dimensional manifold with an f-structure. Then there is a tensor field f of type $(1, 1)$ on M^{2n+s} that is of rank
If there exist vector fields \(\xi_x, x = 1, \ldots, s \) on \(M^{2n+s} \) such that
\[
\begin{align*}
\frac{\partial \xi_x}{\partial x} &= 0, & \eta^x(\xi_y) &= \delta^x_y, & \eta^x \circ f &= 0, & f^2 &= -1 + \eta^y \otimes \xi_y,
\end{align*}
\]
we say \(M^{2n+s} \) has an \(f \)-structure with complemented frames. Further we say that the \(f \)-structure is normal if
\[
\begin{align*}
[\xi, \eta] + df \otimes \xi &= 0,
\end{align*}
\]
where \([\xi, \eta]\) is the Nijenhuis torsion of \(f \). It is a consequence of normality that \([\xi_x, \xi_y] = 0\). Moreover it is known that there exists a Riemannian metric \(g \) on \(M^{2n+s} \) satisfying
\[
\begin{align*}
g(X, Y) &= g(fX, fY) + \sum_x \eta^x(X)\eta^x(Y),
\end{align*}
\]
where \(X \) and \(Y \) are arbitrary vector fields on \(M^{2n+s} \). Define a 2-form \(F \) on \(M^{2n+s} \) by
\[
\begin{align*}
F(X, Y) &= g(X, fY).
\end{align*}
\]
A normal \(f \)-structure for which \(F \) is closed will be called a \(K \)-structure and a \(K \)-structure for which there exist functions \(\alpha^1, \ldots, \alpha^s \) such that \(\alpha^x F = df^x \) for \(x = 1, \ldots, s \) will be called an \(S \)-structure.

Lemma 1. If \(M^{2n+s}, n > 1 \), has an \(S \)-structure, then the \(\alpha^x \) are all constant.

Proof. \(\alpha^x F = df^x \) so that \(d\alpha^x \wedge F = 0 \) since \(dF = 0 \). However \(F \neq 0 \) so \(d\alpha^x = 0 \) and hence \(\alpha^x \) is constant.

The special case where the \(\alpha^x \) are all 0 or all 1 has been studied in [1]. Also, the following were proved.

Lemma 2. If \(M^{2n+s} \) has a \(K \)-structure, the \(\xi_x \) are Killing vector fields and
\[
d\eta^x(X, Y) = -2(\nabla_X \eta^x)(Y).
\]
Here \(\nabla \) is the Riemannian connection of \(g \) on \(M^{2n+s} \).

From Lemma 2, we can see that in the case of an \(S \)-structure \(\alpha^x f^y = -2\nabla_X \eta^x \).

Lemma 3. If \(M^{2n+s} \) has a \(K \)-structure, then
\[
(\nabla_X f)(Y, Z) = \frac{1}{2} \sum_x (\eta^x(Y)d\eta^x(fZ, X) + \eta^x(Z)d\eta^x(X, fY)).
\]
to an involutive m-dimensional distribution if $\{\partial(m)/\partial u^x\}, x = 1, \ldots, m,$ is a basis of \mathfrak{H}_m for every $m \in U$ and if each leaf of \mathfrak{H} intersects U in at most one m-dimensional slice of $\{U, (u^1, \ldots, u^n)\}$. We say \mathfrak{H} is regular if every leaf of \mathfrak{H} intersects the domain of a cubical coordinate system which is regular with respect to \mathfrak{H}.

In [9] it is proven that if \mathfrak{H} is regular on a compact connected manifold M, then every leaf of \mathfrak{H} is compact and that the quotient M/\mathfrak{H} is a compact differentiable manifold. Moreover the leaves of \mathfrak{H} are the fibers of a C^∞ fibering of M with base manifold N/\mathfrak{H} and the leaves are all C^∞ isomorphic.

We now note that the distribution \mathfrak{H} spanned by the vector fields ξ_1, \ldots, ξ_s of a normal f-structure is involutive. In fact we have by normality

$$0 = [f, f](\xi_y, \xi_z) + d\eta^x(\xi_y, \xi_z)\xi_x = f^2(\xi_y, \xi_z) - \eta^x((\xi_y, \xi_z))\xi_x = -[\xi_y, \xi_z]$$

from which it easily follows that \mathfrak{H} is involutive. If \mathfrak{H} is regular and the vector fields ξ_x are regular we say that the normal f-structure is regular. Thus from the results of [9] we see that if M^{2n+s} is compact and has a regular normal f-structure, then M^{2n+s} admits a C^∞ fibering over the $(2n)$-dimensional manifold $N^{2n} = M^{2n+s}/\mathfrak{H}$ with compact, C^∞ isomorphic, fibers.

Since the distribution \mathfrak{H} of a regular normal f-structure consists of s 1-dimensional regular distributions each given by one of the ξ_x's, if M^{2n+s} is compact, the integral curves of ξ_x are closed and hence homeomorphic to circles S^1. The ξ_x's being independent and regular show that the fibers determined by the distribution \mathfrak{H} are homeomorphic to tori T^s.

Now define the period function λ_X of a regular closed vector field X by

$$\lambda_X(m) = \inf\{t > 0 | (\exp tX)(m) = m\}.$$

For brevity we denote λ_{ξ_x} by λ_x. W. M. Boothby and H. C. Wang [3] proved that $\lambda_X(m)$ is a differentiable function on M^{2n+s}. We now prove the following

Lemma 4. The functions λ_x are constants.

The proof of the lemma makes use of the following theorem of A. Morimoto [7].

Theorem (Morimoto [7]). Let M be a complex manifold with almost complex structure tensor J. Let X be an analytic vector field on M such that X and JX are closed regular vector fields. Set $p(m) = \lambda_X(m) + \sqrt{\lambda_JX(m)}$. Then p is a holomorphic function on M.

Proof of lemma. For s even,

$$\tilde{f} = f + \sum_{i=1}^{s/2} (\eta^i \otimes \xi^{i*} - \eta^{i*} \otimes \xi_i), \quad i = 1, \ldots, s/2, \quad i^* = i + s/2,$$
defines a complex structure on \(M = M^{2n+s} \) (cf. [6]). It is clear from the normality that \(\xi_x \) is a holomorphic vector field. For \(s \) odd, a normal almost contract structure \((\xi, \xi_0, \eta_0)\) is defined where \(\xi_0 \) and \(\eta_0 \) generically denote one of the \(\xi_x \)'s and \(\eta_x \)'s respectively [6]. It is well known that this structure induces a complex structure \(J \) on \(M = M^{2n+s} \times S^1 \). Moreover, by the normality, \(\xi_0 \) considered as a vector field on \(M \) is analytic. Then \(p(m) = \lambda_{x}(m) + \sqrt{-1} \lambda_{x}(m) \) or \(p((m, q)) = \lambda_{\xi_0}((m, q)) + \sqrt{-1}\lambda_{\xi_0}((m, q)), \) \(q \in S^1 \), for \(s \) odd, is a holomorphic function on \(M \) by the theorem of Morimoto. Since \(M \) is compact, \(p \) must be constant. Thus \(\lambda_{x} \) is constant on \(M \) and since \(\lambda_{\xi_0}(m, q) = \lambda_{x}(m), \lambda_{x} \) is constant on \(M^{2n+s} \).

Let \(C_x = \lambda_{x}(m) \), then the circle group \(S^1 \) of real numbers modulo \(C_x \) acts on \(M^{2n+s} \) by \((t, m) \mapsto (\exp t \xi_x(m), t \in \mathbb{R} \). Now the only element in \(T^S = S^1 \times \ldots \times S^1 \) with a fixed point in \(M^{2n+s} \) is the identity and since \(M^{2n+s} \) is a fiber space over \(N^{2n} \), we need only show that \(M^{2n+s} \) is locally trivial [3]. Let \{\(U_a \)\} be a cover of \(N^{2n} \) such that each \(U_a \) is the projection of a regular neighborhood on \(M^{2n+s} \) and let \(s_a: U_a \rightarrow M^{2n+s} \) be the section corresponding to \(u^1 = \text{constant}, \ldots, u^s = \text{constant} \). Then the maps \(\Psi_a: U_a \times T^S \rightarrow M^{2n+s} \) defined by

\[
\Psi_a(p, t_1, \ldots, t_s) = (\exp (t_1 \xi_1 + \cdots + t_s \xi_s))(s_a(p))
\]

give coordinate maps for \(M^{2n+s} \).

Finally (cf. [1]) we note that \(\gamma = (\eta^1, \ldots, \eta^s) \) defines a Lie algebra valued connection form on \(M^{2n+s} \) and we denote by \(\tilde{\gamma} \) the horizontal lift with respect to \(\gamma \). Define a tensor field \(J \) of type \((1, 1)\) on \(N^{2n} \) by \(JX = \pi_* f^\gamma X \). Then, since the distribution \(\mathfrak{L} \) complementary to \(\mathfrak{H} \) is horizontal with respect to \(\gamma \),

\[
J^2X = \pi_* f^\gamma \pi_* f^\gamma X = \pi_* f^2 \tilde{\gamma} X = -X.
\]

Moreover

\[
[J, J](X, Y) = -[\gamma, Y] + [\pi_* f^\gamma X, \pi_* f^\gamma Y] - \pi_* f^\gamma [\pi_* f^\gamma X, Y] - \pi_* f^\gamma [\pi_* f^\gamma X, \pi_* f^\gamma Y]
\]

\[
= -\pi_* ([\gamma^\ast \pi_* \tilde{\gamma} X, \pi_* \tilde{\gamma} Y] + \pi_* [\gamma^\ast \pi_* \tilde{\gamma} X, \pi_* \tilde{\gamma} Y] - \pi_* f^\gamma [\pi_* f^\gamma X, \pi_* f^\gamma Y] - \pi_* f^\gamma [\pi_* f^\gamma X, \pi_* f^\gamma Y] - \pi_* f^\gamma [\pi_* f^\gamma X, \pi_* f^\gamma Y]
\]

\[
= \pi_* ([f, f] f^\gamma X, f^\gamma Y] - \eta^\ast f(\pi^\gamma X, f^\gamma Y), \xi_x) + \pi_* ([\pi^\gamma X, f^\gamma Y] - \pi_* f^\gamma [\pi^\gamma X, f^\gamma Y] - \pi_* f^\gamma [\pi^\gamma X, f^\gamma Y] - \pi_* f^\gamma [\pi^\gamma X, f^\gamma Y]
\]

\[
= \pi_* ([f, f] f^\gamma X, f^\gamma Y] + d\eta^\ast f(\pi^\gamma X, f^\gamma Y) f^\gamma X, \xi_x)
\]

\[
= 0.
\]

Thus we see that \(N^{2n} \) is a complex manifold.

We define an Hermitian metric \(G \) on \(N^{2n} \) by \(G(X, Y) = g(\pi^\gamma X, \pi^\gamma Y) \). Indeed

\[
G(JX, JY) = g(\pi^\gamma \pi_* f^\gamma X, \pi^\gamma \pi_* f^\gamma Y) = g(f^\gamma X, f^\gamma Y)
\]

\[
= g(\pi^\gamma X, \pi^\gamma Y) - \sum \eta^\ast(\pi^\gamma X) \eta^\ast(\pi^\gamma Y) = G(X, Y).
\]
Now define the fundamental 2-form \(\Omega \) by \(\Omega(X, Y) = G(X, JY) \). Then for vector fields \(\widetilde{X}, \widetilde{Y} \) on \(M^{2n+s} \) we have
\[
\pi^*\Omega(\widetilde{X}, \widetilde{Y}) = \Omega(\pi_*\widetilde{X}, \pi_*\widetilde{Y}) = G(\pi_*\widetilde{X}, J\pi_*\widetilde{Y}) \\
= g(\pi_*\widetilde{X}, \pi_*\widetilde{Y}) = g(-f^2\widetilde{X}, f\widetilde{Y}) = F(\widetilde{X}, \widetilde{Y}).
\]
Thus \(F = \pi^*\Omega \). If now \(dF = 0 \), then \(0 = d\pi^*\Omega = \pi^*d\Omega \) and hence \(d\Omega = 0 \) since \(\pi^* \) is injective. Thus the manifold \(N^{2n} \) is Kählerian.

3. Submersions. Let \(\nabla \) denote the Riemannian connection of \(g \) on \(M^{2n+s} \).

Since the \(\xi^i \)'s are Killing, \(g \) is projectable to the metric \(G \) on \(N^{2n} \). Then following [8] the horizontal part of \(\nabla_{\pi X} \pi Y \) is \(\pi \nabla_X Y \) where as we shall see \(\nabla \) is the Riemannian connection of \(G \). Now for an \(S \)-structure we have seen that \(\nabla_{\pi X} \xi = \alpha^i \xi_i \) for any vector field \(\xi \) on \(M^{2n+s} \). By normality \(f \) is projectable (\(\xi, f = 0 \)) and the \(\alpha^i \)'s are constants; thus we can write
\[
\nabla_{\pi X} \xi = -\pi H(x),
\]
where \(H(x) \) is a tensor field of type \((1, 1)\) on \(N^{2n} \).

We can now find the vertical part of \(\nabla_{\pi X} \pi Y \).
\[
g(\nabla_{\pi X} \pi Y, \xi) = -g(\pi Y, \nabla_{\pi X} \xi) = g(\pi Y, \pi H(x) \xi).
\]
Thus we can write
\[
\nabla_{\pi X} \pi Y = \pi\nabla_X Y + b^x(X, Y)\xi_x
\]
where each \(b^x \) is a tensor field of type \((0, 2)\) and
\[
G(H_x, Y) = b^x(X, Y).
\]

Lemma 5. \(\xi, G(\pi X) = 0 \) for any vector field \(X \) on \(N^{2n} \), where \(\xi_x \) is the operator of Lie differentiation in the \(\xi_x \) direction.

Proof. We have that \(g(\xi_y, \pi X) = 0 \) for \(y = 1, \ldots, s \). By Lemma 2, the \(\xi_x \) are Killing, that is \(\xi_x g = 0 \). From the normality of \(f \), \(\xi_x \xi = 0 \). Hence, we have that
\[
g(\xi_y, \xi_x(\pi X)) = 0, \quad y = 1, \ldots, s,
\]
and so \(\xi_x(\pi X) \) is horizontal. However,
\[
\pi_*[\xi_x(\pi X)] = [\pi_*\xi_x, \pi_*\pi X] = 0
\]
and so \(\xi_x(\pi X) \) is vertical.
Using the lemma we see that \(\tilde{\nabla}_X \tilde{\xi}_x = \tilde{\nabla}_{\tilde{\xi}_x} \tilde{\xi}_x \) for any vector field \(X \) on \(N^{2n} \). Since \(\tilde{\xi}_x \) is Killing, we have

\[
0 = g(\tilde{\nabla}_{\tilde{\xi}_x} \xi_x, \tilde{\xi}_x) = -g(\xi_x, \tilde{\nabla}_{\xi_x} \xi_x) = -g(\xi_x, b^\xi(X, X)\xi_x) = -b^\xi(X, X)
\]

for all \(X \). That is to say \(b^\xi(X, Y) = -b^\xi(Y, X) \) for all \(X \) and \(Y \). Now we have that

\[
0 = \tilde{\nabla}_X (\tilde{\nabla}_Y \xi_x) - \tilde{\nabla}_Y (\tilde{\nabla}_X \xi_x) = [\tilde{\nabla}_X, \tilde{\nabla}_Y] \xi_x
\]

(\(6 \))

\[
= \tilde{\nabla} (\tilde{\nabla}_X Y - \tilde{\nabla}_Y X - [X, Y]) + (b^\xi(X, Y) - b^\xi(Y, X) + d\eta^\xi(\tilde{\tau}_X, \tilde{\tau}_Y))\xi_x
\]

where we have used the following lemma.

Lemma 6. \([\tilde{\nabla}_X, \tilde{\nabla}_Y] = \tilde{\nabla}([\tilde{\nabla}_X, \tilde{\nabla}_Y]) - d\eta^\xi(\tilde{\tau}_X, \tilde{\tau}_Y))\xi_x\).

Proof. Since \(\tilde{\nabla}_X, \tilde{\nabla}_Y \) = \([\tilde{\nabla}_X, \tilde{\nabla}_Y] = [X, Y] \) we see that \(\tilde{\nabla}([X, Y]) \) is the horizontal part of \([\tilde{\nabla}_X, \tilde{\nabla}_Y]\). By Lemma 2, we have

\[
d\eta^\xi(\tilde{\tau}_X, \tilde{\tau}_Y) = -2g(\tilde{\nabla}_{\tilde{\tau}_X} \eta^\xi, \tilde{\tau}_Y) = -2g(\tilde{\nabla}_{\tilde{\tau}_Y} \eta^\xi, \tilde{\tau}_X) = +2g(\xi_x, \tilde{\nabla}_{\tilde{\tau}_Y} \eta^\xi).
\]

Also \(d\eta^\xi(\tilde{\tau}_X, \tilde{\tau}_Y) = -d\eta^\xi(\tilde{\tau}_Y, \tilde{\tau}_X) = -2g(\xi_x, \tilde{\nabla}_{\tilde{\tau}_X} \eta^\xi) \). Thus

\[
2d\eta^\xi(\tilde{\tau}_X, \tilde{\tau}_Y) = 2g(\xi_x, \tilde{\nabla}_{\tilde{\tau}_X} \eta^\xi - \tilde{\nabla}_{\tilde{\tau}_Y} \eta^\xi)
\]

or

\[
d\eta^\xi(\tilde{\tau}_X, \tilde{\tau}_Y)\xi_x = \sum_x g(\xi_x, [\tilde{\tau}_X, \tilde{\tau}_Y])\xi_x = \text{vertical part of } [\tilde{\tau}_X, \tilde{\tau}_Y].
\]

From (6) we see \(\tilde{\nabla}_X Y - \tilde{\nabla}_Y X - [X, Y] = 0 \) and \(b^\xi(X, Y) = -\frac{1}{2}d\eta^\xi(\tilde{\tau}_X, \tilde{\tau}_Y) \). Furthermore,

\[
XG(Y, Z) = \tilde{\nabla}Xg(\tilde{\tau}_Y, \tilde{\tau}_Z) = g(\tilde{\nabla}_{\tilde{\tau}_X} \tilde{\tau}_Y, \tilde{\tau}_Z) + g(\tilde{\tau}_X, \tilde{\nabla}_{\tilde{\tau}_X} \tilde{\tau}_Z)
\]

\[
= g(\tilde{\nabla}_{\tilde{\tau}_X} Y, \tilde{\tau}_Z) + g(\tilde{\tau}_X, \tilde{\nabla}_{\tilde{\tau}_X} Z) = G(\nabla_X Y, Z) + G(Y, \nabla_X Z).
\]

Thus, we have the following proposition.

Proposition. \(\nabla \) is the Riemannian connection of \(G \) on \(N^{2n} \).

4. The \(S \)-structure case. Let \(M^{2n+s} \), \(n > 1 \), be a manifold with an \(S \)-structure. Then, as we have seen, there exist constants \(\alpha^x \), \(x = 1, \ldots, s \), such that \(\alpha^x P = d\eta^x \). We will consider two cases, namely \(\sum_x (\alpha^x)^2 = 0 \) and \(\sum_x (\alpha^x)^2 \neq 0 \).

In the first case each \(\alpha^x = 0 \) and by Lemma 2 each \(\xi_x \) is Killing, hence the
regular vector fields ξ_1, \ldots, ξ_s are parallel on M^{2n+s}. Moreover the complementary distribution \mathcal{Q} (projection map is $-f^2 = 1 - \eta_x \otimes \xi_x$) is parallel. If now the distribution \mathcal{Q} is also regular, we have a second fibration of M^{2n+s} with fibers the integral submanifolds L^{2n} of \mathcal{Q} and base space an s-dimensional manifold N^s. Thus by a result of A. G. Walker [10] we see that although M^{2n+s} is not necessarily reducible (even though it is locally the product of N^{2n} and T^s) it is a covering space of $N^{2n} \times N^s$ and is covered by $L^{2n} \times T^s$. In summary we have

Theorem 2. If M^{2n+s} is as in Theorem 1 with $df = 0, x = 1, \ldots, s$, and \mathcal{Q} regular, then M^{2n+s} is a covering space of $N^{2n} \times N^s$, where N^s is the base space of the fibration determined by \mathcal{Q}.

Now as in Theorem 1, since the ξ_i's, $i = 1, \ldots, s$, are regular, we could fibrate by any $s - t$ of them to obtain a fibration of M^{2n+s} as a principal T^{s-t} bundle over a manifold P^{2n+t}. By normality the remaining t vector fields are projectable to P^{2n+t}. Moreover they are regular on P^{2n+t}; for if not, their integral curves would be dense in a neighborhood U over which M^{2n+s} is trivial with compact fiber T^{s-t} contradicting their regularity on M^{2n+s}. Thus P^{2n+t} is a principal T^t bundle over N^s.

Theorem 3. If $M^{2n+s}, n > 1$, is as in Theorem 1 with $d\eta^x = \alpha^xF$ and $\Sigma_x(\alpha^x)^2 \neq 0$, then M^{2n+s} is a principal T^{s-1} bundle over a principal circle bundle p^{2n+1} over N^{2n} and the induced structure on p^{2n+1} is a normal contact metric (Sasakian) structure.

Proof. Without loss of generality we suppose $\alpha^s \neq 0$. Then fibrating as above by ξ_1, \ldots, ξ_{s-1} we have that M^{2n+s} is a principal T^{s-1} bundle over a principal circle bundle P^{2n+1} over N^{2n}. Let $p: M^{2n+s} \to p^{2n+1}$ denote the projection map. By normality f, ξ_s, η^s are projectable, so we define ϕ, ξ, η on p^{2n+1} by

$$\phi X = p_* \tilde{\phi} X, \quad \xi = p_* \xi_s, \quad \eta(X) = \eta^S(\tilde{p} X)$$

where $\tilde{\phi}$ denotes the horizontal lift with respect to the connection $(\eta^1, \ldots, \eta^{s-1})$ considered as a Lie algebra valued connection form as in the proof of Theorem 1. Then by a straightforward computation we have

$$\eta(\xi) = 1, \quad \phi \xi = 0, \quad \eta \circ \phi = 0, \quad \phi^2 = -1 + \xi \otimes \eta, \quad [\phi, \phi] + \xi \otimes d\eta = 0,$$

that is, (ϕ, ξ, η) is a normal almost contact structure on p^{2n+1}. Defining a metric \tilde{g} by $\tilde{g}(X, Y) = \tilde{g}(\tilde{\phi} X, \tilde{\phi} Y)$ we have $\tilde{g}(X, \xi) = \eta(X)$ and $\tilde{g}(\phi X, \phi Y) = \tilde{g}(X, Y) - \eta(X)\eta(Y)$. Moreover setting $\Phi(X, Y) = \tilde{g}(X, \phi Y)$ we obtain $F = p^*\Phi$. Thus since
\[d\eta^s = \alpha^s F, \quad \Phi = d\eta^s/\alpha^s \quad \text{and} \]
\[\Phi(X, Y) = g(\widehat{\Phi}X, \widehat{\Phi}Y) = d\eta^s(\widehat{\Phi}X, \widehat{\Phi}Y)/\alpha^s = (\chi\eta(Y) - \eta(X) - \eta^s([\widehat{\Phi}X, \widehat{\Phi}Y]))/\alpha^s = d\eta(X, Y)/\alpha^s \]
since \(\eta^s \) is horizontal. Thus we have that \(\eta^s(d\eta)^n = \eta^s(\alpha^s\Phi)^n \neq 0 \) and hence that \(P^{2n+1} \) has a normal contact metric structure with \(\xi \) regular.

Remark 1. While it is already clear that \(P^{2n+1} \) is a principal circle bundle over \(N^{2n} \), it now also follows from the well-known Boothby-Wang and Morimoto fibrations.

Remark 2. Under the hypotheses of Theorem 3, it is possible to assume without loss of generality that \(\alpha^x \) equals 0 or \(1/\sqrt{t} \) where \(t \) is the number of non-zero \(\alpha^x \) and hence there exist constants \(\beta^x_q, q = 1, \ldots, s - 1 \), such that \(\eta^q = \sum \alpha^x \eta^x \) and \(\bar{\eta}^q = \sum \alpha^x \eta^x \) are 1-forms with \(d\eta^q = 0 \) and \(d\bar{\eta}^q = F \). Then \(f, \bar{\eta}^x \) and the dual vector fields \(\xi \) again define a \(K \)-structure on \(M^{2n+s} \). If now this \(K \)-structure is regular, then, since the distribution spanned by \(\xi_1, \ldots, \xi_{s-1} \) and its complement are parallel, \(M^{2n+s} \) is a covering of the product of \(P^{2n+1} \) and a manifold \(P^{s-1} \) as in the proof of Theorem 2.

Remark 3. In [1] one of the authors gave the following example of an \(S \)-manifold as a generalization of the Hopf-fibration of the odd-dimensional sphere over complex projective space, \(\eta' : S^{2n+1} \to PC^n \). Let \(\Delta \) denote the diagonal map and define a space \(H^{2n+s} \) by the diagram

\[H^{2n+s} \xrightarrow{\hat{\Delta}} S^{2n+1} \times \cdots \times S^{2n+1} \]
\[PC^n \xrightarrow{\Delta} PC^n \times \cdots \times PC^n \]

that is \(H^{2n+s} = \{(P_1, \ldots, P_s) \in S^{2n+1} \times \cdots \times S^{2n+1} | \eta'(P_1) = \cdots = \eta'(P_s)\} \) and thus \(H^{2n+s} \) is diffeomorphic to \(S^{2n+1} \times T^{s-1} \). Further properties of the space \(H^{2n+s} \) are given in [1], [2].

If however the \(d\eta^x \)'s are independent then there can be no intermediate bundle \(P^{2n+t} \) over \(N^{2n} \) such that \(M^{2n+s} \) is trivial over \(P^{2n+t} \).

Remark 4. If \(M^{2n+s} \) is as in Theorem 1 with the \(d\eta^x \)'s independent, then there is no fibration by \(s - t \) of the \(\xi_x \)'s yielding a principal toroidal bundle \(P^{2n+t} \) over \(N^{2n} \) such that \(M^{2n+s} = P^{2n+t} \times T^{s-t} \). For suppose \(P^{2n+t} \) is such an intermediate bundle, then it is necessary that \(\nabla_{\xi_x} \xi_x = 0 \) (see e.g. [8]) and thus the \(\eta^x \)'s are parallel contradicting the independence of the \(d\eta^x \)'s.

5. Curvature. Let \(\nabla \) and \(R \) denote the curvature tensors of \(\nabla \) and \(\nabla \) respectively. Then
In [1], one of the present authors developed a theory of manifolds with an /-structure of constant /-sectional curvature. This is the analogue of a complex manifold of constant holomorphic curvature. A plane section of M^{2n+s} is called an /-section if there is a vector X orthogonal to the distribution spanned by the ξ_i's such that $\{X, fX\}$ is an orthonormal pair spanning the section. The sectional curvature of this section is called an /-sectional curvature and is of course given by $(\xi_X f X / X f X)_{\xi_X f X}$ to De 0 of constant /-sectional curvature if the /-sectional curvatures are constant for all /-sections. This is an absolute constant. We then have the following theorem.

Theorem 5. If M^{2n+s} is a compact, connected manifold with a regular S-structure of constant /-sectional curvature c, then N^{2n} is a Kähler manifold of constant holomorphic curvature.

Proof. That N^{2n} is Kähler follows from Theorem 1. By definition there exist $\alpha^1, \ldots, \alpha^s$, necessarily constant such that $\alpha^s F = d\eta^X$. If X is a unit vector on N^{2n}, then we have

$$G(R_{XJ}^J X, X) = g(\tilde{\eta}_{\pi X} \tilde{\eta}_{\pi J} \tilde{\eta}_{\pi J} \tilde{\eta}_{\pi X}, \tilde{\eta}_{\pi X})$$

$$+ \sum_x \left(\frac{1}{2} \alpha^s F(\tilde{\eta}_{\pi J} X, \tilde{\eta}_{\pi J} X) \frac{1}{2} \alpha^s F(\tilde{\eta}_{\pi X}, \tilde{\eta}_{\pi X}) \right)$$

$$- \frac{1}{2} \alpha^s F(\tilde{\eta}_{\pi X}, \tilde{\eta}_{\pi J} X) \frac{1}{2} \alpha^s F(\tilde{\eta}_{\pi J} X, \tilde{\eta}_{\pi X})$$

$$- 2(\frac{1}{2} \alpha^s F(\tilde{\eta}_{\pi X}, \tilde{\eta}_{\pi J} X) \frac{1}{2} \alpha^s F(\tilde{\eta}_{\pi J} X, \tilde{\eta}_{\pi X}))$$

$$= c + \frac{3}{4} \sum_x (\alpha^x)^2 (F(\tilde{\eta}_{\pi X}, \tilde{\eta}_{\pi X}))^2$$

$$= c + \frac{3}{4} \sum_x (\alpha^x)^2, \text{ which is constant.}$$
Remark. This agrees with the results in [1] on H^{2n+s}. H^{2n+s} is a principal toroidal bundle over PC^n and PC^n is of constant holomorphic curvature equal to 1. Also, $\alpha^x = 1$ for $x = 1, \ldots, s$ and H^{2n+s} was found to be of constant f-sectional curvature equal to $1 - 3s/4$.

REFERENCES

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823