Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Regularity properties of the element of closest approximation


Author: Harold S. Shapiro
Journal: Trans. Amer. Math. Soc. 181 (1973), 127-142
MSC: Primary 42A08; Secondary 41A50
DOI: https://doi.org/10.1090/S0002-9947-1973-0320606-6
MathSciNet review: 0320606
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given an element $ f \epsilon {L^p}(T),1 < p < \infty $, and a closed translation invariant subspace $ S$ of $ {L^p}(T)$, we investigate the regularity (smoothness) properties of the element of $ S$ which is closest to $ f$. The regularity of this element is in general less than that of $ f$. The problem reveals a surprising connection with a hitherto unstudied class of extremal Fourier multipliers.


References [Enhancements On Off] (What's this?)

  • [1] V. M. Adamjan, D. Z. Arov and M. G. Kreĭn, Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz, Funkcional. Anal. i Priložen. 2 (1968), no. 1-19. (Russian) MR 38 #2591. MR 0234274 (38:2591)
  • [2] J. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414. MR 1501880
  • [3] P. L. Duren, Theory of $ {H^p}$ spaces, Pure and Appl. Math., vol. 38, Academic Press, New York, 1970. MR 42 #3552. MR 0268655 (42:3552)
  • [4] G. H. Hardy and J. E. Littlewood, A convergence criterion for Fourier series, Math. Z. 28 (1928), 612-634. MR 1544980
  • [5] L. Hörmander, Estimates for translation invariant operators in $ {L^p}$ spaces, Acta Math. 104 (1960), 93-140. MR 22 #12389. MR 0121655 (22:12389)
  • [6] S. Jacobs, An extremal problem for analytic functions in multiply connected regions, Uppsala, Feb. 1969, preprint. (Swedish)
  • [7] J.-P. Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin and New York, 1970. MR 0275043 (43:801)
  • [8] K. deLeeuw, On $ {L^p}$ multipliers, Ann. of Math. (2) 81 (1965), 364-379. MR 30 #5127. MR 0174937 (30:5127)
  • [9] E. Lukacs, Characteristic functions, 2nd ed., Hafner, New York, 1970. MR 0124075 (23:A1392)
  • [10] J. Peetre, Reflections on Besov spaces, Lund, 1966 (mimeographed lecture notes).
  • [11] H. S. Shapiro, Applications of normed linear spaces to function-theoretic extremal problems, Lectures on Functions of a Complex Variable, Univ. of Michigan Press, Ann Arbor, Mich., 1955, pp. 399-404. MR 17, 25. MR 0070718 (17:25f)
  • [12] -, Smoothing and approximation of functions, Van Nostrand Reinhold Math. Studies, no. 24, Van Nostrand Reinhold, New York, 1969. MR 0412669 (54:791)
  • [13] -, Topics in approximation theory, Lecture Notes in Math., vol. 187, Springer-Verlag, Berlin and New York, 1971. MR 0437981 (55:10902)
  • [14] -, Fourier multipliers whose multiplier norm is an attained value, Proc. Sympos. Linear Operators and Approximation (Oberwolfach, Germany, Aug. 1971) (to appear).
  • [15] O. Szasz, Über die Fourierschen Reihen gewisser Funktionenklassen, Math. Ann. 100 (1928), 530-536. MR 1512500
  • [16] M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean $ n$-space. II. Translation invariant operators, duality and interpolation, J. Math. Mech. 14 (1965), 821-839. MR 31 #5087. MR 0180857 (31:5087)
  • [17] A. Zygmund, On the preservation of classes of functions, J. Math. Mech. 8 (1959), 889-895; erratum, ibid. 9 (1960), 663. MR 22 #8277. MR 0117498 (22:8277)
  • [18] -, Trigonometrical series, 2nd rev. ed., Cambridge Univ. Press, New York, 1968. MR 38 #4882.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A08, 41A50

Retrieve articles in all journals with MSC: 42A08, 41A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0320606-6
Keywords: Best approximation, $ {L^p}$ modulus of continuity, regularity, metric projection, translation invariant space, Fourier multiplier
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society