Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Free $ Z\sb{8}$ actions on $ S\sp{3}$


Author: Gerhard X. Ritter
Journal: Trans. Amer. Math. Soc. 181 (1973), 195-212
MSC: Primary 55C35; Secondary 57A10
DOI: https://doi.org/10.1090/S0002-9947-1973-0321078-8
MathSciNet review: 0321078
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is devoted to the problem of classifying periodic homeomorphisms which act freely on the $ 3$-sphere. The main result is the classification of free period eight actions and a generalization to free actions whose squares are topologically equivalent to orthogonal transformations. The result characterizes those $ 3$-manifolds which have the $ 3$-sphere as universal covering space and the cyclic group of order eight as fundamental group.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, An alternative proof that $ 3$-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37-65. MR 20 #7269. MR 0100841 (20:7269)
  • [2] G. E. Bredon and J. W. Wood, Non-orientable surfaces in orientable $ 3$-manifolds, Invent. Math. 7 (1969), 83-110. MR 39 #7616. MR 0246312 (39:7616)
  • [3] D. W. Henderson, Extensions of Dehn's lemma and the loop theorem, Trans. Amer. Math. Soc. 120 (1965), 448-469. MR 32 #4686. MR 0187233 (32:4686)
  • [4] -, Relative general position, Pacific J. Math. 18 (1966), 513-523. MR 34 #819. MR 0200933 (34:819)
  • [5] J. F. P. Hudson, Piecewise linear topology, Benjamin, New York, 1969. MR 40 #2094. MR 0248844 (40:2094)
  • [6] G. R. Livesay, Fixed point free involutions on the $ 3$-sphere, Ann. of Math. (2) 72 (1960), 603-611. MR 22 #7131. MR 0116343 (22:7131)
  • [7] K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg 11 (1935), 102-109.
  • [8] P. M. Rice, Free actions of $ {Z_4}$ on $ {S^3}$, Duke Math. J. 36 (1969), 749-751. MR 40 #2064. MR 0248814 (40:2064)
  • [9] H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner Verlag, Leipzig, 1934.
  • [10] E. C. Zeeman, Seminar on combinatorial topology, Mimeographed Notes, Inst. Hautes Études Sci., Paris, 1963.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55C35, 57A10

Retrieve articles in all journals with MSC: 55C35, 57A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0321078-8
Keywords: Three-sphere, free action, orthogonal $ (p,q)$-action, knot, lens space, general position, topologically equivalent
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society