UPPER BOUNDS FOR VERTEX DEGREES OF PLANAR 5-CHROMATIC GRAPHS

BY

LEE W. JOHNSON

ABSTRACT. Upper bounds are given for the degrees of vertices in planar 5-chromatic graphs. Some inequalities are derived for irreducible graphs which restrict the type of planar graphs that can be irreducible.

Introduction. Let G be a planar graph with n vertices v_1, v_2, \ldots, v_n, labelled so that $\rho(v_{i+1}) \geq \rho(v_i)$, $i = 1, \ldots, n - 1$, where $\rho(v_i)$ is the degree of v_i. By a coloring of G we shall mean a vertex coloring. It is natural to ask for sufficient conditions on $\rho(v_n)$ to guarantee that G can be 4-colored. In [3], Malek and Skupień showed that G can be 4-colored whenever $\rho(v_n) \geq n - 6$. Their proof is based on the following observations:

0-1. Suppose G is a planar graph with a vertex v such that $\rho(v) \leq 4$. Let $G' = G - v$ be the subgraph obtained by deleting v and its incident edges from G. If G' can be 4-colored, then so can G (cf., Berge [1]).

0-2. Let k_i denote the number of vertices in G of degree i. If G has no vertices of degree 4 or less, then $k_5 \leq 12 + k_7 + 2k_8 + \cdots + (n - 7)k_{n-1}$, with equality if and only if G is maximal planar [3].

We include a brief sketch of their proof, since we use modifications of their technique later. From 0-2, it follows that if $\rho(v_n) \geq n - 6$, then G has a vertex v of degree 4 or less. Form $G' = G - v$ and note that $\rho'(v_n)$, the degree of v_n in G', satisfies $\rho'(v_n) \geq (n - 1) - 6$. Hence, G' has a vertex v' such that $\rho'(v') \leq 4$. The vertex v' may be deleted from G' to form G'', and this process continued until a graph H is obtained which is 4-colorable. Repeatedly using 0-1, it follows that G is 4-colorable.

The result of Malek and Skupień can be improved somewhat without difficulty. Following Ore [4], an edge contraction in G is defined by:
Let $E = (u, v)$ be an edge in G. Form a graph G' from G by identifying u and v and deleting loops and multiple edges.

A sequence of edge contractions is called a contraction (connected homomorphism). A graph G is called contraction critical if any contraction G' of G has a chromatic number less than the chromatic number $\chi(G)$ of G. G is called irreducible if G is maximal planar, contraction critical and $\chi(G) = 5$.

In Chapter 12 of [4], Ore gives numerous configurations which cannot occur in an irreducible graph H. In §2, a result due to Errera [2] is used; namely, a minimal separating circuit C in H cannot consist of an even sequence of vertices of degree 5 and one arbitrary or two consecutive arbitrary vertices. In §2, we use this to show $\rho(v_n) \geq n - 8$ implies G is 4-colorable. However, these techniques rapidly become tedious. Therefore, in §3 we confine ourselves to irreducible graphs, obtaining several inequalities and an upper bound on the largest vertex degree possible in an irreducible graph.

Upper bounds on the vertex degrees of a planar 5-chromatic graph. Let G be a planar graph as before. For our purposes, we may as well assume G is maximal, for if not we may add edges to G and still retain the inequality $\rho(v_n) \geq n - 8$. Moreover, we may as well assume G has no vertices of degree 4 or less. For if G has a vertex v of degree 4 or less, we may form $G_1 = G - v$. The graph G_1 has $n - 1$ vertices and the degree of v_n in G_1 is no less than $(n - 1) - 8$. By repeatedly deleting vertices of degree 4 or less, we eventually obtain a graph G_k that is either 4-colorable or has no vertices of degree 4 or less. In addition, if G_k has m vertices, the degree of v_n in G_k is no less than $m - 8$.

Proposition 1. Let $\rho(v_n) = n - 7$; then G is 4-colorable.

Proof. As G is maximal and has no vertices of degree 4 or less, $k = 12 + k_2 + \cdots + (n - 13)k_{n-7}$. Therefore, $k_2 = n - 1$, $k_6 = k_7 = \cdots = k_{n-8} = 0$, $k_{n-7} = 1$. The vertices adjacent to v_n form a minimal separating circuit C, and as C consists entirely of 5-vertices, G cannot be irreducible. If G is 4-colorable, we are through, so we may assume $\chi(G) = 5$ and that G is not contraction critical.

Hence, there is an edge in G, say (u, v), that can be contracted so that the resulting graph G' is also 5-chromatic. Since all the vertices of G except v_n are 5-vertices, we may suppose u is a 5-vertex. Figure 1(a) shows u and its neighbors and Figure 1(b) shows the contraction of the edge (u, v), where (b, v) and/or (c, v) may have to be deleted in order that G' contain no multiple edges.
Add sufficient edges to G' to make the resulting graph maximal, and call the resulting graph G_0.

We claim G_0 has a vertex of degree 4. This is easily seen, for if G does not contain edges from b to v or from c to v, then $G' = G_0$ and one of a and d is a 4-vertex. If G contains an edge from b to v but no edge from c to v, then (b, v) is eliminated from Figure 1(b) to form G'. To get G_0, we add the edge (a, c) to G', and now one of b and d must be a 4-vertex. Similarly, if G has edges from b to v and c to v, then edges (a, c) and (a, d) must be added to G' to get G_0, forcing one of b and v to be a 4-vertex.

Thus, G_0 has $n - 1$ vertices, is maximal planar, has a vertex of degree 4 and has only one vertex of degree larger than 5. Further, each vertex of G_0 has degree 3 or larger. Now form a sequence of maximal planar graphs G_0, G_1, \ldots, G_k as follows: if r is a vertex of G_0 of degree 4 or less, delete r from G_0 and add sufficient edges so that the result G_1 is maximal planar. If the degree of r is 3, no edges need be added while if the degree of r is 4 only one edge can be added. Clearly G_1 has a vertex of degree 4 or less, has $n - 2$ vertices only one of which has degree larger than 5 and is maximal. We obtain G_2 from G_1 in the same fashion that G_1 was obtained from G_0, terminating the sequence when one of the graphs G_k is 4-colorable.

Since G_k is 4-colorable, so is G_0. But if G_0 is 4-colorable, then so is G' which is a contradiction. Hence, G must have been 4-colorable.

We only sketch the proof of Proposition 2 as it is similar to the proof of Proposition 1.

Proposition 2. Let $\rho(n) = n - 8$, then G is 4-colorable.

Proof. Since G is maximal and has no vertices of degree 4 or less, $k_5 = 12 + k_7 + \cdots + (n - 14)k_{n-8}$. Thus, $k_5 = n - 2$, $k_6 = 1$, $k_7 = k_8 = \cdots = k_{n-9} = 0$, $k_{n-8} = 1$. As before, G cannot be irreducible, and hence G is either 4-colorable, or not contraction critical.
If G is not contraction critical, we suppose the edge (u, v) can be contracted to form G', where $\chi(G') \geq \chi(G)$. Add sufficient edges to G' to form G'_0 which is maximal. Recall that, in G, $\rho(v_{n-1}) = 6$ and note that if $\rho(u) = 5$ and $v = v_n$ or $v = v_{n-1}$, then the argument in Proposition 1 shows G'_0 has a vertex of degree 4. If $\rho(u) = 6$ and $v = v_n$, then a slight modification of the argument in Proposition 1 shows G'_0 has a vertex of degree 4, i.e., the pentagons in Figure 1 are now hexagons. The only troublesome case is when $\rho(u) = \rho(v) = 5$. We refer to Figure 1 to handle this case.

If G does not contain the edges (b, v) and (c, v), then $G' = G'_0$. If one of a or d had degree 5 in G, then it has degree 4 in G'_0. Thus, suppose that $a = v_n$ and $d = v_{n-1}$. In G'_0, v_n has degree $(n-1)-8$, d has degree 5 and v has degree 6. Therefore, since G'_0 has $n-1$ vertices, one of which is of degree $(n-1)-8$, we may apply the same reasoning to G'_0 as we did to G and conclude G'_0 is not contraction critical. Similar arguments apply if G contains one or both of the edges (b, v) and (c, v) and show that G'_0 either has a vertex of degree 4 or is not contraction critical.

If G'_0 is not contraction critical, contract an edge of G'_0 to form G''_0, where $\chi(G''_0) \geq \chi(G'_0)$. Add sufficient edges to G''_0 to form G'_1 which is maximal, and note $\chi(G'_1) \geq \chi(G)$. Continue until a graph G_k is formed, where G_k is 4-colorable or G_k has a vertex of degree 4 or less. Note that in each G_i, $0 \leq i \leq k$, if G_i has m vertices then G_i has one vertex of degree $m-8$, one of degree 6 and $m-2$ vertices of degree 5. Thus, we may as well assume G_0 has a vertex of degree 4, say r.

We now form a sequence of maximal planar graphs G_i, as in Proposition 1, by repeatedly deleting vertices of degree 4 or less. The only difficulty occurs when a vertex r_i of degree 4 in G_i is adjacent to two vertices of degree 6 or more, as in Figure 2.

![Figure 2](image-url)

If the degrees of a and c are larger than 5 and if the edge (a, c) is in G, then G_{i+1} is formed by deleting r_i and adding the edge (b, d). If G_{i+1} has no
vertices of degree 4 or less, then b and d must have had degree 5 in G_i and hence have degree 5 in G_{i+1}. In G_i, one of a and c must have had degree 6 for the process of forming the sequence does not increase the degrees of vertices. Suppose a had degree 6 in G_i, then a has degree 5 in G_{i+1}. Further, all the vertices of G_{i+1}, except a, have degree 5. Suppose G_{i+1} has m vertices. Then as G_{i+1} is maximal and has no vertices of degree 4 or less and $72 - 1$ vertices of degree 5, we may use 0-2 to obtain $m - 1 = 12 + k_7 + \cdots + (m - 7)k_{m-1}$, with $k_7 + k_8 + \cdots + k_{m-1} = 1$. Thus, $k_{m-7} = 1$ so Proposition 1 applies, and G_{i+1} is 4-colorable. As before, whenever one of the sequence G_j is 4-colorable, so is G.

Bounds and inequalities for irreducible graphs. In this section, we derive some inequalities which restrict the types of planar graphs which can be irreducible. The interest in irreducible graphs is, of course, engendered by the fact that a planar 5-chromatic graph must be contractible to an irreducible graph. Hence, the 4-color conjecture is equivalent to showing there can be no irreducible graphs.

Let H be an irreducible graph with n vertices. In Ore [4], are found configurations which cannot occur in H. First, if v is a vertex of H, then $\rho(v) \geq 5$. Following Ore, if $\rho(v) = 5$ or $\rho(v) = 6$ then v is called a minor vertex, otherwise v is called a major vertex. If $\rho(v) = k$, then v is called a k-vertex. If H is to be irreducible, the following must hold:

(a) Each 5-vertex has a major neighbor.

(b) Each 5-vertex with exactly 1 major neighbor has at least 2 neighbors which are 6-vertices.

(c) Each 6-vertex has a major neighbor.

(d) Each 6-vertex with exactly 1 major neighbor has no more than two 5-vertices as neighbors.

(e) Each 7-vertex with exactly 1 major neighbor has no more than four 5-vertices as neighbors.

(f) Each 7-vertex with no major neighbor has no more than three 5-vertices as neighbors.

(g) Each k-vertex, $k \geq 8$, has no more than $k - 2$ neighbors of degree 5.

Condition (g) is due to Errera, the others are results of Birkhoff, Franklin and Winn.

We write $k_7 = R + S + T$, $k_6 = M + N$ and $k_5 = A + B$, where

$R =$ number of 7-vertices with 2 or more major neighbors;
$S =$ number of 7-vertices with exactly 1 major neighbor;
$T =$ number of 7-vertices with exactly 1 major neighbor;
$M =$ number of 6-vertices with 2 or more major neighbors;
$N =$ number of 6-vertices with 2 or more major neighbors;
$A =$ number of 5-vertices with 3 or more major neighbors;
$B =$ number of 5-vertices with 2 or more major neighbors.
\(N = k_6 - M; \)
\(A = \text{number of 5-vertices with 2 or more major neighbors}; \)
\(B = k_5 - A. \)

Let \(\lambda \) denote the maximal degree of the vertices of \(H \). Clearly, \(H \) must contain at least \(2A + B \) major vertices. Using (g), together with (e) and (f), we obtain the inequality

\[
2A + B \leq 5R + 4S + 3T + 6k_8 + 7k_9 + \cdots + (\lambda - 2)k_\lambda
\]

or

\[
2A + B + 5 + 2T \leq 5k_7 + 6k_8 + \cdots + (\lambda - 2)k_\lambda.
\]

From (b) and (d)

\[
2B \leq 4M + 2N
\]

or

\[
B + N \leq 2k_6.
\]

Finally,

\[
2A + B + 2R + S + 2M + N \leq 7k_7 + 8k_8 + \cdots + \lambda k_\lambda.
\]

Adding (2), (5) and twice (4),

\[
4k_5 + 2k_6 + 2k_7 + N \leq 4k_6 + 12k_7 + \cdots + (2\lambda - 2)k_\lambda
\]

so if we add \(2n + 8k_5 + 6k_6 \) to both sides of (6) and use \(6n - 12 = 5k_5 + 6k_6 + \cdots + \lambda k_\lambda \), we obtain

\[
12k_5 + 8k_6 + 2k_7 + N \leq 10n - 24.
\]

In (7), write \(12k_5 + 8k_6 = 7(k_5 + k_6) + 5k_5 + k_6 \) and note that \((k_5 + k_6) = n - k_7 - k_8 - \cdots - k_\lambda \), while \(k_5 = 12 + k_7 + 2k_8 + \cdots + (\lambda - 6)k_\lambda \). Thus, (7) is transformed to

\[
k_6 + 3k_8 + 8k_9 + \cdots + (5\lambda - 37)k_\lambda + N \leq 3n - 84.
\]

Another formulation of (7) is gotten by setting \(n = k_5 + k_6 + \cdots + k_\lambda \) and using \(2k_5 = 2(12 + k_7 + \cdots + (\lambda - 6)k_\lambda) \) to obtain

\[
24 + k_{12} + 2k_{13} + \cdots + (\lambda - 11)k_\lambda + N/2 \leq k_6 + 3k_7 + 3k_8 + 2k_9 + k_{10}.
\]

While inequalities (7), (8) and (9) are all equivalent, each finds its own use in determining what an irreducible graph must look like, as will be demonstrated below.

Inequality (8) gives an upper bound for the maximal degree that a vertex in \(H \) can have, namely

\[
\lambda \leq (3n - 47)/5.
\]
It has been shown recently [5] that a graph with 39 or fewer vertices is 4-colorable, but it is unknown whether a graph with 40 vertices is 4-colorable.

When \(n = 40 \) in (10), we obtain \(\lambda \leq 14 \). The use of inequalities (1)–(9) will determine the possible degrees of vertices in an irreducible graph with 40 vertices and a vertex of degree 14.

Statement (8) gives \(k_6 + 3k_8 + \cdots + 33k_{14} \leq 36 \) and, hence, \(0 \leq k_6 \leq 3 \), \(0 \leq k_8 \leq 1 \), \(k_9 = k_{10} = \cdots = k_{13} = 0 \), and \(k_6 + 3k_8 \leq 3 \). Statement (9) gives \(27 \leq k_6 + 3k_7 + 3k_8 \), or \(k_7 \geq 8 \). By statement (7), \(6k_5 + 4k_6 + k_7 \leq 188 \). Using \(k_5 = 12 + k_7 + 2k_8 + 8k_{14} \), we obtain \(7k_7 + 4k_6 + 12k_8 \leq 68 \). We have deduced above, \(4k_6 + 12k_8 \leq 12 \), thus \(k_7 = 8 \).

From \(k_5 = 12 + k_7 + \cdots + (\lambda - 6)k_\lambda \), it is easy to deduce \(n = 12 + k_6 + 2k_7 + \cdots + (\lambda - 5)k_\lambda \). Thus, \(\lambda = 14 \), \(k_7 = 8 \) implies \(3 = k_6 + 3k_8 \). If \(k_8 = 1 \) then \(k_6 = 0 \) and so \(B = 0 \). Hence, \(k_5 = 30 = A \), and in (2) we obtain \(60 + 5 + 2T \leq 40 + 6 + 12 \), an impossibility. Hence, \(k_5 = 28, k_6 = 3, k_7 = 8, k_8 = k_9 = \cdots = k_{13} = 0, k_{14} = 1 \).

More information can be gained from (2), (4) and (5). It is not hard to show the only possibilities are \(A = 22, B = 6, M = 3, N = 0 \) and \(R = 7, S = 0, T = 1 \) or \(R = 6, S = 7, T = 0 \).

REFERENCES

SAVANNAH RIVER LABORATORY, E. I. DU PONT DE NEMOURS & CO., AIKEN, SOUTH CAROLINA 29801

Current address: Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24601