Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Adjoining inverses to commutative Banach algebras


Author: Béla Bollobás
Journal: Trans. Amer. Math. Soc. 181 (1973), 165-174
MSC: Primary 46J05
DOI: https://doi.org/10.1090/S0002-9947-1973-0324418-9
MathSciNet review: 0324418
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a commutative unital Banach algebra. Suppose $ G \subset A$ is such that $ \vert\vert a\vert\vert \leqslant \vert\vert ga\vert\vert$ for all $ g \in G,a \in A$. Two questions are considered in the paper. Does there exist a superalgebra $ B$ of $ A$ in which every $ g \in G$ is invertible? Can one always have also $ \vert\vert{g^{ - 1}}\vert\vert \leqslant 1$ if $ g \in G$? Arens proved that if $ G = \{ g\} $ then there is an algebra containing $ {g^{ - 1}}$, with $ \vert\vert{g^{ - 1}}\vert\vert \leqslant 1$. In the paper it is shown that if $ G$ is countable $ B$ exists, but if $ G$ is uncountable, this is not necessarily so. The answer to the second question is negative even if $ G$ consists of only two elements.


References [Enhancements On Off] (What's this?)

  • [1] Richard F. Arens, Linear topological division algebras, Bull. Amer. Math. Soc. 53 (1947), 623-630. MR 9, 6. MR 0020987 (9:6a)
  • [2] -, Inverse-producing extensions of normed algebras, Trans. Amer. Math. Soc. 88 (1958), 536-548. MR 20 #1921. MR 0095419 (20:1921)
  • [3] -, Ideals in Banach algebra extensions, Studia Math. 31 (1968), 29-34. MR 39 #780. MR 0239423 (39:780)
  • [4] Richard F. Arens and Kenneth Hoffman, Algebraic extension of normed algebras, Proc. Amer. Math. Soc. 7 (1956), 203-210. MR 17, 1113. MR 0077901 (17:1113e)
  • [5] Charles E. Rickart, The singular elements of a Banach algebra, Duke Math. J. 14 (1947), 1063-1077. MR 9, 358. MR 0023457 (9:358h)
  • [6] G. E. Šilov, On normed rings possessing one generator, Mat. Sb. 21 (63) (1947), 25-47. (Russian) MR 9, 445. MR 0024056 (9:445e)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46J05

Retrieve articles in all journals with MSC: 46J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0324418-9
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society