Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the Picard-Lefschetz transformation for algebraic manifolds acquiring general singularities


Author: Alan Landman
Journal: Trans. Amer. Math. Soc. 181 (1973), 89-126
MSC: Primary 14D05
DOI: https://doi.org/10.1090/S0002-9947-1973-0344248-1
MathSciNet review: 0344248
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a holomorphic family $ {\{ {V_t}\} _{t \in D}}$ of projective algebraic varieties $ {V_t}$ parametrized by the unit disc $ D = \{ t \in {\mathbf{C}}:\vert t\vert < 1\} $ and where $ {V_t}$ is smooth for $ t \ne 0$ but $ {V_0}$ may have arbitrary singularities. Displacement of cycles around a path $ t = {t_0}{e^{i\theta }}(0 \leqslant \theta \leqslant 2\pi )$ leads to the Picard-Lefschetz transformation $ T:{H_\ast }({V_{{t_0}}},{\mathbf{Z}}) \to {H_\ast }({V_{{t_0}}},{\mathbf{Z}})$ on the homology of a smooth $ {V_{t0}}$. We prove that the eigenvalues of $ T$ are roots of unity and obtain an estimate on the elementary divisors of $ T$. Moreover, we give a global inductive procedure for calculating $ T$ in specific examples, several of which are worked out to illustrate the method.


References [Enhancements On Off] (What's this?)

  • [1] I. Fáry, Cohomologie des variétés algébriques, Ann. of Math. (2) 65 (1957), 21-73. MR 18, 822. MR 0084172 (18:822f)
  • [2] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-326. MR 33 #7333. MR 0199184 (33:7333)
  • [3] K. Kodaira, On compact analytic surfaces. II, Ann. of Math. (2) 77 (1963), 563-626. MR 32 #1730.
  • [4] S. Lefschetz, L'analysis situs et la géométrie algébrique, Gauthier-Villars, Paris, 1924.
  • [5] A. P. Ogg, On pencils of curves of genus two, Topology 5 (1966), 355-362. MR 34 #1321. MR 0201437 (34:1321)
  • [6] E. Picard and G. Simart, Théorie des fonctions algébriques de deux variables indépendantes. Vols. I, II, Gauthier-Villars, Paris, 1897, 1906.
  • [7] A. H. Wallace, Homology theory on algebraic varieties, Internat. Series of Monographs on Pure and Appl. Math., vol. 6, Pergamon Press, New York, 1958. MR 20 #46. MR 0093522 (20:46)
  • [8] O. Zariski, A theorem on the Poincaré group of an algebraic hypersurface, Ann. of Math. (2) 38 (1937), 131-141. MR 1503330
  • [9] A. B. Žižčenko, Homology groups of algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 765-788. MR 25 #83. MR 0136615 (25:83)
  • [10] E. Brieskorn, Die monodromie der isolieters singularitäten von hyperflächen, Manuscripta Math. 29 (1970), 103-162. MR 0267607 (42:2509)
  • [11] C. H. Clemens, Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities, Trans. Amer. Math. Soc. 136 (1969), 93-108. MR 38 #2135. MR 0233814 (38:2135)
  • [12] P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Math., no. 163, Springer-Verlag, Berlin and New York, 1970. MR 0417174 (54:5232)
  • [13] P. Deligne and A. Grothendieck, S.G.A. seminars on monodromy, Inst. Hautes Études Sci., Paris (mineograph notes).
  • [14] P. A. Griffiths, Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228-296. MR 41 #3470. MR 0258824 (41:3470)
  • [15] N. Katz, Nilpotent connections and the monodromy theorem. Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 175-232. MR 0291177 (45:271)
  • [16] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies, no. 61, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1968. MR 39 #969. MR 0239612 (39:969)
  • [17] W. Schmid, Degeneration of Hodge structures (to appear).
  • [18] A. Weil, Introduction à l'étude des variétés kahlériennes, Publ. Inst. Math. Univ. Nancago, VI, Actualités Sci. Indust., no. 1267, Hermann, Paris, 1958. MR 22 #1921. MR 0111056 (22:1921)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14D05

Retrieve articles in all journals with MSC: 14D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0344248-1
Keywords: Picard-Lefschetz transformation ( $ {\mathbf{P}} - {\mathbf{L}}$ transformation), vanishing cycle, vanishing cone, general pencil of hyperplane sections, branch function, branch curve, normal crossings, monodromy theorem, Gauss-Manin connection, Hodge decomposition
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society