Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On certain homotopy properties of some spaces of linear and piecewise linear homeomorphisms. II


Author: Chung Wu Ho
Journal: Trans. Amer. Math. Soc. 181 (1973), 235-243
MSC: Primary 57E05; Secondary 57C05
DOI: https://doi.org/10.1090/S0002-9947-1973-99929-3
Part I: Trans. Amer. Math. Soc. (1973), 213-233
MathSciNet review: 0322891
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In his study of the smoothings of p. l. manifolds, R. Thom considered the homotopy groups of a certain space $ {L_n}$ of p.l. homeomorphisms on an $ n$-simplex. N. H. Kuiper showed in 1965 that the higher homotopy groups of $ {L_n}$ were in general nontrivial. The main result in this paper is that $ {\pi _0}({L_2}) = {\pi _1}({L_2}) = 0$.

The proof of this result is based on a theorem of S. S. Cairns in 1944 on the deformation of rectilinear complexes in $ {R^2}$ and a theorem established in Part I of this paper.


References [Enhancements On Off] (What's this?)

  • [1] S. S. Cairns, Isotopic deformations of geodesic complexes on the $ 2$-sphere and plane, Ann. of Math. (2) 45 (1944), 207-217. MR 5, 273. MR 0010271 (5:273d)
  • [2] -, Deformations of plane rectilinear complexes, Amer. Math. Monthly 51 (1944), 247-252. MR 5, 273. MR 0010273 (5:273f)
  • [3] V. K. A. M. Guggenheim, Piecewise linear isotopy and imbedding of elements and spheres. I, II, Proc. London Math. Soc. (3) 3 (1953), 29-53, 129-152. MR 15, 336. MR 0058204 (15:336d)
  • [4] P. J. Hilton and S. Wylie, Homology theory, 2nd ed., Cambridge Univ. Press, Cambridge, 1962.
  • [5] C.-W. Ho, On certain homotopy properties of some spaces of linear and piecewise linear homeomorphisms. I, Trans. Amer. Math. Soc. 181 (1973), 213-233. MR 0322891 (48:1252)
  • [6] J. F. P. Hudson, Piecewise linear topology, Math. Lecture Notes Series, Benjamin, New York, (1969). MR 40 #2094. MR 0248844 (40:2094)
  • [7] N. H. Kuiper, On the smoothings of triangulated and combinatorial manifolds, Differential and Combinatorial Topology (A Sympos. in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J., 1965, pp. 3-22. MR 33 #4941. MR 0196755 (33:4941)
  • [8] J. R. Munkres, Elementary differential topology, Lectures Given at M.I.T., Fall 1961, Ann. of Math. Studies, no. 54, Princeton Univ. Press, Princeton, N. J., 1966. MR 33 #6637. MR 0198479 (33:6637)
  • [9] R. Thom, Des variétés triangulées aux variétés différentiables, Proc. Internat. Congress Math. (Edinburgh, 1958), Cambridge Univ. Press, New York, 1960, pp. 248-255. MR 22 #12536. MR 0121806 (22:12536)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57E05, 57C05

Retrieve articles in all journals with MSC: 57E05, 57C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-99929-3
Keywords: Simplicial subdivision, proper subdivision, rectilinear cell complex, inductive limit, the space of linear isomorphisms on a complex
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society