Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

New criteria for freeness in abelian groups


Author: Paul Hill
Journal: Trans. Amer. Math. Soc. 182 (1973), 201-209
MSC: Primary 20K20
DOI: https://doi.org/10.1090/S0002-9947-1973-0325805-5
MathSciNet review: 0325805
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new criterion is established for an abelian group to be free. The criterion applies to an ascending chain of free subgroups. The result is used to construct groups that are almost free but not free. In particular, we construct examples that show that the class of free abelian groups is not definable in the logical language $ {L_{\infty \kappa }}$ if $ \kappa \leq {\aleph _2}$. In doing so, we take advantage of a recent theorem of P. Eklof.


References [Enhancements On Off] (What's this?)

  • [1] G. Bergman, Boolean rings of projection maps, Proc. London Math. Soc. 4 (1972), 593-598. MR 0311531 (47:93)
  • [2] P. Eklof, Infinitary equivalence of abelian groups: With counterexamples to Scott's theorem in uncountable cardinals (preprint). MR 0354349 (50:6829)
  • [3] L. Fuchs, Infinite abelian groups. Vol. I, Pure and Appl. Math., vol. 36, Academic Press, New York, 1970. MR 41 #333. MR 0255673 (41:333)
  • [4] P. Griffith, Infinite abelian group theory, University of Chicago Press, Chicago Ill. and London, 1970. MR 44 #6826. MR 0289638 (44:6826)
  • [5] -, A note on a theorem of Hill, Pacific J. Math. 29 (1969), 279-284. MR 39 #6919. MR 0245613 (39:6919)
  • [6] -, Extensions of free groups by torsion groups, Proc. Amer. Math. Soc. 24 (1970), 677-679. MR 41 #1879. MR 0257228 (41:1879)
  • [7] -, $ {\aleph _n}$-free abelian groups (preprint).
  • [8] P. Hill, On the freeness of abelian groups: A generalization of Pontryagin's theorem, Bull. Amer. Math. Soc. 76 (1970), 1118-1120. MR 41 #8518. MR 0263919 (41:8518)
  • [9] -, The purification of subgroups of abelian groups, Duke Math. J. 37 (1970), 523-527. MR 42 #365. MR 0265456 (42:365)
  • [10] -, The splitting of modules and abelian groups, Canad. J. Math. (to appear). MR 0338217 (49:2983)
  • [11] -, Sums of cyclic groups, Lecture Notes, University of Arizona, Tucson, Ariz., April 1972.
  • [12] -, The additive group of commutative rings generated by idempotents, Proc. Amer. Math. Soc. 38 (1973), 499-502. MR 0316439 (47:4986)
  • [13] G. Nöbeling, Verallgemeinerung eines Satzes von Herrn E. Specker, Invent. Math. 6 (1968), 41-55. MR 38 #233. MR 0231907 (38:233)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20K20

Retrieve articles in all journals with MSC: 20K20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0325805-5
Keywords: Groups are abelian, free groups, $ {\aleph _1}$-freeness, $ {\aleph _2}$-freeness, smooth (ascending) chain, criteria for freeness, equivalence in $ {L_{\infty \kappa }}$
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society