Generalized semigroups of quotients

Author:
C. V. Hinkle

Journal:
Trans. Amer. Math. Soc. **183** (1973), 87-117

MSC:
Primary 20M10

DOI:
https://doi.org/10.1090/S0002-9947-1973-0335666-6

MathSciNet review:
0335666

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For *S* a semigroup with 0 and a right *S*-set, certain classes of sub *S*-sets called right quotient filters are defined. A study of these right quotient filters is made and examples are given including the classes of intersection large and dense sub *S*-sets respectively. The general semigroup of right quotients *Q* corresponding to a right quotient filter on a semigroup *S* is developed and basic properties of this semigroup are noted. A nonzero regular semigroup *S* is called primitive dependent if each nonzero right ideal of *S* contains a 0-minimal right ideal of *S*. The theory developed in the paper enables us to characterize all primitive dependent semigroups having singular congruence the identity in terms of subdirect products of column monomial matrix semigroups over groups.

**[1]**K. Asano,*Über die Quotientenbildung von Schiefringen*, J. Math. Soc. Japan**1**(1949), 73-78. MR**11**, 154. MR**0031468 (11:154h)****[2]**Gordon L. Bailes,*Right inverse semigroups*, Thesis, Clemson University, Clemson, S.C., 1972.**[3]**P. Berthiaume,*The infective envelope of S-sets*, Canad. Math. Bull.**10**(1967), 261-273. MR**35**#4321. MR**0213457 (35:4321)****[4]**A. H. Clifford and G. B. Preston,*The algebraic theory of semigroups*, 2nd ed., Vol. I, Math. Surveys, no. 17, Amer. Math. Soc., Providence, R.I., 1961. MR**24**#A2627. MR**0132791 (24:A2627)****[5]**-,*The algebraic theory of semigroups*. Vol. II, Math. Surveys, no. 17, Amer. Math. Soc., Providence, R.I., 1967. MR**36**#1558. MR**0218472 (36:1558)****[6]**E. H. Feller and R. L. Gantos,*Indecomposable and injective S-systems with zero*, Math. Nachr.**41**(1969), 37-48. MR**40**#7374 MR**0254164 (40:7374)****[7]**T. E. Hall,*On regular semigroups whose idempotents form a subsemigroup*, Bull. Austral. Math. Soc.**1**(1969), 195-208. MR**40**#2772. MR**0249527 (40:2772)****[8]**C. V. Hinkle, Jr.,*The extended centralizer of an S-set*(submitted).**[9]**R. E. Johnson,*The extended centralizer of a ring over a module*, Proc. Amer. Math. Soc.**2**(1951), 891-895. MR**13**, 618. MR**0045695 (13:618c)****[10]**F. R. McMorris,*On quotient semigroups*(submitted).**[11]**-,*Vital infective S-systems*, Math. Nachr.**47**(1970), 121-125. MR**44**#342. MR**0283109 (44:342)****[12]**-,*The singular congruence and the maximal quotient semigroup*, Canad. Math. Bull. (to appear). MR**0310101 (46:9204)****[13]**Mario Petrich,*Topics in semigroups*, Pennsylvania State University, 1967.**[14]**David A. Smith,*On semigroups, semirings, and rings of quotients*, J. Sci. Hiroshima Univ. Ser. A-I Math.**30**(1966), 123-130. MR**34**#7692. MR**0207879 (34:7692)****[15]**Yuzo Utumi,*On quotient rings*, Osaka Math. J.**8**(1956), 1-18. MR**18**, 7. MR**0078966 (18:7c)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20M10

Retrieve articles in all journals with MSC: 20M10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1973-0335666-6

Keywords:
Semigroups of quotients,
singular congruences,
Rees matrix semigroups,
primitive dependent semigroups

Article copyright:
© Copyright 1973
American Mathematical Society