Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Schur multipliers of finite simple groups of Lie type


Author: Robert L. Griess
Journal: Trans. Amer. Math. Soc. 183 (1973), 355-421
MSC: Primary 20C25
DOI: https://doi.org/10.1090/S0002-9947-1973-0338148-0
MathSciNet review: 0338148
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents results on Schur multipliers of finite groups of Lie type. Specifically, let p denote the characteristic of the finite field over which such a group is defined. We determine the p-part of the multiplier of the Chevalley groups $ {G_2}(4),{G_2}(3)$ and $ {F_4}(2)$ the Steinberg variations; the Ree groups of type $ {F_4}$ and the Tits simple group $ ^2{F_4}(2)'$.


References [Enhancements On Off] (What's this?)

  • [1] J. L. Alperin and D. Gorenstein, The multiplieators of certain simple groups, Proc. Amer. Math. Soc. 17 (1966), 515-519. MR 33 #1362. MR 0193141 (33:1362)
  • [2] N. Bourbaki, Éléments de mathématique. Fase. XXXIV. Groupes et algébres de Lie, Actualités Sci. Indust., no. 1337, Hermann, Paris, 1968. MR 39 #1590. MR 0240238 (39:1590)
  • [3] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
  • [4] R. W. Carter, Simple groups and simple Lie algebras, J. London Math. Soc. 40 (1965), 193-240. MR 30 #4855. MR 0174655 (30:4855)
  • [5] C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. (2) 7 (1955), 14-66. MR 17, 457. MR 0073602 (17:457c)
  • [6] B. Fischer, Finite groups generated by 3-transpositions, Invent. Math. (to appear). MR 0294487 (45:3557)
  • [7] D. Gorenstein, Finite groups, Harper & Row, New York, 1968. MR 38 #229. MR 0231903 (38:229)
  • [8] R. Griess, Schur multipliers of the known finite simple groups, Bull. Amer. Math. Soc. 78 (1972), 68-71. MR 0289635 (44:6823)
  • [9] -, Schur multipliers of some sporadic simple groups, J. Algebra (to appear). MR 0382426 (52:3310)
  • [10] B. Huppert, Endliche Gruppen I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967, MR 37 #302. MR 0224703 (37:302)
  • [11] J. Lindsey, On a six dimensional projective representation of $ PSU(4,3)$ (to appear).
  • [12] R. Ree, A family of simple groups associated with the simple Lie algebra of type $ ({F_4})$, Amer. J. Math. 83 (1961), 401-420; A family of simple groups associated with the simple Lie algebra of type $ ({G_2})$, Amer. J. Math. 83 (1961), 432-462. MR 24 #A2617; MR 25 #2123. MR 0132781 (24:A2617)
  • [13] I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20-50; ibid. 132 (1907), 85-137.
  • [14] -, Über die Darstellung der symmetrischen und der alternienden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155-250.
  • [15] R. Steinberg, Générateurs, relations, et revêtements de groupes algébriques, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Librarie Universitaire, Louvain; Gauthier-Villars, Paris, 1962, pp. 113-127. MR 27 #3638. MR 0153677 (27:3638)
  • [16] R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56. MR 27 #5870. MR 0155937 (27:5870)
  • [17] -, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), 875-891. MR 22 #79. MR 0109191 (22:79)
  • [18] -, Lectures on Chevalley groups, Yale University Notes, New Haven, Conn., 1967.
  • [19] J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), 313-329. MR 29 #2259. MR 0164968 (29:2259)
  • [20] D. Wales and J. McKay, The multipliers of the simple groups of order 604, 800 and 50, 232, 960, J. Algebra 17 (1971), 262-272. MR 43 #340. MR 0274577 (43:340)
  • [21] H. N. Ward, On the triviality of primary parts of the Schur multiplier, J. Algebra 10 (1968), 377-382. MR 38 #1181. MR 0232858 (38:1181)
  • [22] K. Yamazaki, On projective representations and ring extensions of finite groups, J. Fac. Sci. Univ. Tokyo 10 (1964), 147-195. MR 31 #4842. MR 0180608 (31:4842)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20C25

Retrieve articles in all journals with MSC: 20C25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0338148-0
Keywords: Schur multiplier, covering group, finite group of Lie type, simple group, stable cocycle class
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society