Hull subordination and extremal problems for starlike and spirallike mappings

Author:
Thomas H. MacGregor

Journal:
Trans. Amer. Math. Soc. **183** (1973), 499-510

MSC:
Primary 30A32

DOI:
https://doi.org/10.1090/S0002-9947-1973-0338339-9

MathSciNet review:
0338339

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a compact subset of the family of functions analytic in , and let be a continuous linear operator of order zero on . We show that if the extreme points of the closed convex hull of is the set , then is hull subordinate to in . This generalizes results of R. M. Robinson corresponding to families of functions that are subordinate to or to . Families to which this theorem applies are discussed and we identify each such operator with a suitable sequence of complex numbers.

Suppose that is a nonconstant entire function and that . We show that the maximum of over the class of starlike functions of order *a* is attained only by the functions . A similar result is obtained for spirallike mappings. Both results generalize a theorem of G. M. Golusin corresponding to the family of starlike mappings.

**[1]**D. A. Brannan, J. G. Clunie and W. E. Kirwan,*On the coefficient problem for functions of bounded boundary rotation*, Ann. Acad. Sci. Fenn. Ser. AI (to appear). MR**0338343 (49:3108)****[2]**L. Brickman, T. H. MacGregor and D. R. Wilken,*Convex hulls of some classical families of univalent functions*, Trans. Amer. Math. Soc. 156 (1971), 91-107. MR**43**#494. MR**0274734 (43:494)****[3]**L. Brickman, D. J. Hallenbeck, T. H. MacGregor and D. R. Wilken,*Convex hulls and extreme points of families of starlike and convex mappings*, Trans. Amer. Math. Soc. (to appear). MR**0338337 (49:3102)****[4]**N. Dunford and J. T. Schwartz,*Linear operators*. I:*General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR**22**#8302. MR**0117523 (22:8302)****[5]**G. M. Goluzin,*On a variational method in the theory of analytic functions*, Leningrad. Gos. Univ. Učen. Zap. 144, Ser. Mat. Nauk**23**(1952), 85-101; English transl., Amer. Math. Soc. Transl. (2)**18**(1961), 1-14. MR**17**, 1070; MR 23 #A1803. MR**0124491 (23:A1803)****[6]**D. J. Hallenbeck,*Convex hulls and extreme points of some families of univalent functions*, Ph.D. Dissertation, State University of New York, Albany, N. Y., 1972.**[7]**D. J. Hallenbeck and T. H. MacGregor,*Subordination and extreme-point theory*, Pacific J. Math. (to appear). MR**0361035 (50:13481)****[8]**D. J. Hallenbeck,*Convex hulls and extreme points of some families of univalent functions*, Trans. Amer. Math. Soc. (to appear). MR**0338338 (49:3103)****[9]**I. S. Jack,*Functions starlike and convex of order*, J. London Math. Soc. (2)**3**(1971), 469-474. MR**43**#7611. MR**0281897 (43:7611)****[10]**W. E. Kirwan,*A note on extremal problems for certain classes of analytic functions*, Proc. Amer. Math. Soc.**17**(1966), 1028-1030. MR**34**#2854. MR**0202995 (34:2854)****[11]**Z. Nehari,*Conformal mapping*, McGraw-Hill, New York, 1952. MR**13**, 640. MR**0045823 (13:640h)****[12]**M. S. Robertson,*On the theory of univalent functions*, Ann. of Math. (2)**37**(1936), 374-408. MR**1503286****[13]**-,*An extremal problem for functions with positive real part*, Michigan Math. J. 11 (1964), 327-335. MR**30**#243. MR**0170002 (30:243)****[14]**R. M. Robinson,*Univalent majorants*, Trans. Amer. Math. Soc.**61**(1947), 1-35. MR**8**, 370. MR**0019114 (8:370e)****[15]**L. Špaček,*Contribution à la théorie des fonctions univalentes*, Časopis Pěst. Mat.**62**(1932), 12-19.**[16]**E. Strohhäcker,*Beiträge zur Theorie der schlichten Funktionen*, Math. Z. 37 (1933), 356-380. MR**1545400**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30A32

Retrieve articles in all journals with MSC: 30A32

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1973-0338339-9

Keywords:
Subordination,
hull subordination,
continuous linear operator,
functions with positive real part,
Herglotz representation formula,
extreme points,
closed convex hull,
univalent functions,
starlike mapping,
starlike functions of order *a*,
spirallike functions,
extremal problems,
Kreĭn-Milman theorem,
probability measure,
convex mapping,
convex functions of order *a*,
continuous linear functional

Article copyright:
© Copyright 1973
American Mathematical Society