Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Slicing and intersection theory for chains modulo $ \nu $ associated with real analytic varieties


Author: Robert M. Hardt
Journal: Trans. Amer. Math. Soc. 183 (1973), 327-340
MSC: Primary 32C05; Secondary 32B20
DOI: https://doi.org/10.1090/S0002-9947-1973-0338430-7
MathSciNet review: 0338430
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a real analytic manifold a k dimensional (real) analytic chain is a locally finite sum of integral multiples of chains given by integration over certain k dimensional analytic submanifolds (or strata) of some k dimensional real analytic variety. In this paper, for any integer $ \nu \geq 2$, the concepts and results of [6] on the continuity of slicing and the intersection theory for analytic chains are fully generalized to the modulo $ \nu $ congruence classes of such chains.


References [Enhancements On Off] (What's this?)

  • [1] F. J. Almgren, Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math. (2) 84 (1966), 277-292. MR 34 #702. MR 0200816 (34:702)
  • [2] -, Existence and regularity almost everwhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. (2) 87 (1968), 321-391. MR 37 #837. MR 0225243 (37:837)
  • [3] H. Federer, Some theorems on integral currents, Trans. Amer. Math. Soc. 117 (1965), 43-67. MR 29 #5984. MR 0168727 (29:5984)
  • [4] -, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR 41 #1976. MR 0257325 (41:1976)
  • [5] W. H. Fleming, Flat chains over a finite coefficient group, Trans. Amer. Math. Soc. 121 (1966), 160-186. MR 32 #2554. MR 0185084 (32:2554)
  • [6] R. M. Hardt, Slicing and intersection theory for chains associated with real analytic varieties, Acta. Math. 129 (1972), 75-136. MR 0315561 (47:4110)
  • [7] -, Homology of real analytic and semianalytic sets, Ann. Scuola Norm. Sup. Pisa (to appear).
  • [8] S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloq. Publ., vol. 27, Amer. Math. Soc., Providence, R. I., 1942. MR 4, 84. MR 0007093 (4:84f)
  • [9] W. P. Ziemer, Integral currents $ \bmod\;2$, Trans. Amer. Math. Soc. 105 (1962), 496-524. MR 27 #268. MR 0150267 (27:268)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32C05, 32B20

Retrieve articles in all journals with MSC: 32C05, 32B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0338430-7
Keywords: Analytic chain (modulo $ \nu $), slice (modulo $ \nu $), support (modulo $ \nu $), dimension, intersection theory, flat chain (modulo $ \nu $), rectifiable current, mass
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society