Slicing and intersection theory for chains modulo associated with real analytic varieties

Author:
Robert M. Hardt

Journal:
Trans. Amer. Math. Soc. **183** (1973), 327-340

MSC:
Primary 32C05; Secondary 32B20

MathSciNet review:
0338430

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a real analytic manifold a *k* dimensional (real) analytic chain is a locally finite sum of integral multiples of chains given by integration over certain *k* dimensional analytic submanifolds (or strata) of some *k* dimensional real analytic variety. In this paper, for any integer , the concepts and results of [6] on the continuity of slicing and the intersection theory for analytic chains are fully generalized to the modulo congruence classes of such chains.

**[1]**F. J. Almgren Jr.,*Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem*, Ann. of Math. (2)**84**(1966), 277–292. MR**0200816****[2]**F. J. Almgren Jr.,*Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure*, Ann. of Math. (2)**87**(1968), 321–391. MR**0225243****[3]**Herbert Federer,*Some theorems on integral currents*, Trans. Amer. Math. Soc.**117**(1965), 43–67. MR**0168727**, 10.1090/S0002-9947-1965-0168727-0**[4]**Herbert Federer,*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR**0257325****[5]**Wendell H. Fleming,*Flat chains over a finite coefficient group*, Trans. Amer. Math. Soc.**121**(1966), 160–186. MR**0185084**, 10.1090/S0002-9947-1966-0185084-5**[6]**Robert M. Hardt,*Slicing and intersection theory for chains associated with real analytic varieties*, Acta Math.**129**(1972), 75–136. MR**0315561****[7]**-,*Homology of real analytic and semianalytic sets*, Ann. Scuola Norm. Sup. Pisa (to appear).**[8]**Solomon Lefschetz,*Algebraic Topology*, American Mathematical Society Colloquium Publications, v. 27, American Mathematical Society, New York, 1942. MR**0007093****[9]**William P. Ziemer,*Integral currents 𝑚𝑜𝑑 2*, Trans. Amer. Math. Soc.**105**(1962), 496–524. MR**0150267**, 10.1090/S0002-9947-1962-0150267-3

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
32C05,
32B20

Retrieve articles in all journals with MSC: 32C05, 32B20

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1973-0338430-7

Keywords:
Analytic chain (modulo ),
slice (modulo ),
support (modulo ),
dimension,
intersection theory,
flat chain (modulo ),
rectifiable current,
mass

Article copyright:
© Copyright 1973
American Mathematical Society