Slicing and intersection theory for chains modulo associated with real analytic varieties

Author:
Robert M. Hardt

Journal:
Trans. Amer. Math. Soc. **183** (1973), 327-340

MSC:
Primary 32C05; Secondary 32B20

DOI:
https://doi.org/10.1090/S0002-9947-1973-0338430-7

MathSciNet review:
0338430

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a real analytic manifold a *k* dimensional (real) analytic chain is a locally finite sum of integral multiples of chains given by integration over certain *k* dimensional analytic submanifolds (or strata) of some *k* dimensional real analytic variety. In this paper, for any integer , the concepts and results of [6] on the continuity of slicing and the intersection theory for analytic chains are fully generalized to the modulo congruence classes of such chains.

**[1]**F. J. Almgren, Jr.,*Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem*, Ann. of Math. (2)**84**(1966), 277-292. MR**34**#702. MR**0200816 (34:702)****[2]**-,*Existence and regularity almost everwhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure*, Ann. of Math. (2)**87**(1968), 321-391. MR**37**#837. MR**0225243 (37:837)****[3]**H. Federer,*Some theorems on integral currents*, Trans. Amer. Math. Soc.**117**(1965), 43-67. MR**29**#5984. MR**0168727 (29:5984)****[4]**-,*Geometric measure theory*, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR**41**#1976. MR**0257325 (41:1976)****[5]**W. H. Fleming,*Flat chains over a finite coefficient group*, Trans. Amer. Math. Soc.**121**(1966), 160-186. MR**32**#2554. MR**0185084 (32:2554)****[6]**R. M. Hardt,*Slicing and intersection theory for chains associated with real analytic varieties*, Acta. Math.**129**(1972), 75-136. MR**0315561 (47:4110)****[7]**-,*Homology of real analytic and semianalytic sets*, Ann. Scuola Norm. Sup. Pisa (to appear).**[8]**S. Lefschetz,*Algebraic topology*, Amer. Math. Soc. Colloq. Publ., vol. 27, Amer. Math. Soc., Providence, R. I., 1942. MR**4**, 84. MR**0007093 (4:84f)****[9]**W. P. Ziemer,*Integral currents*, Trans. Amer. Math. Soc.**105**(1962), 496-524. MR**27**#268. MR**0150267 (27:268)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
32C05,
32B20

Retrieve articles in all journals with MSC: 32C05, 32B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1973-0338430-7

Keywords:
Analytic chain (modulo ),
slice (modulo ),
support (modulo ),
dimension,
intersection theory,
flat chain (modulo ),
rectifiable current,
mass

Article copyright:
© Copyright 1973
American Mathematical Society