FINITE GROUPS WITH NICE SUPPLEMENTED SYLOW NORMALIZERS

BY

DAVID PERIN

ABSTRACT. This paper considers finite groups G whose Sylow normalizers are supplemented by groups D having a cyclic Hall 2'-subgroup. G is solvable and all odd order composition factors of G are cyclic. If S ∈ Syl_2^*(D) is cyclic, dihedral, semidihedral, or generalized quaternion, then G is almost supersolvable.

Let \(\mathcal{D} \) denote the class of finite groups D which satisfy:
\[(\ast) \quad D = ST, \quad \text{where } S \in \text{Syl}_2(D) \text{ and } T \text{ is cyclic group of odd order.}\]

We say G is \(\mathcal{D} \)-supplemented if G is finite and every Sylow normalizer in G has a supplement \(D \in \mathcal{D} \).

Theorem 1. \(\mathcal{D} \)-supplemented groups are solvable.

Proof. Assume the theorem is false, and let G be a counterexample of minimal order. Since any homomorphic image of G is \(\mathcal{D} \)-supplemented, G/N is solvable for any 1 ≠ N ◁ G. Thus, G has a unique minimal normal subgroup M. M is nonsolvable, and so 2 divides |M| by the Feit-Thompson Theorem. Choose \(P \in \text{Syl}_2(M) \) and \(Q \in \text{Syl}_2(G) \), \(P ≤ Q \). By the Frattini argument \(G = MN_P \). Let \(D ∈ \mathcal{D} \) be a supplement for \(N_P \). Since \(Q ∈ \text{Syl}_2(G) \), we can assume \(D \) is cyclic of odd order. Choose a subgroup \(H ≥ N(P) \) which is maximal in G. Since \(N(P) ≥ N(Q) \), \(D \) is a supplement for \(H \). \((D ∩ H)^G = (D ∩ H)^H ≤ H\). If \(D ∩ H ≠ 1 \), then \(M ≤ (D ∩ H)^G ≤ H \), a contradiction. Consequently, \(N(P) = N(Q) \) is maximal in G, and \(D \) is a complement for \(N(P) \). G has a faithful primitive representation on the \(d = |D| \) cosets of \(N(P) \), and \(D \) is regularly represented. If \(d \) is not prime, then \(D \) is a B-group \([8, 25.2] \), and so G is 2-transitive. Otherwise \(d \) is prime, and G is 2-transitive by a theorem of Burnside.

Recent results of Shult and O'Nan classify 2-transitive groups H in which \(H_a \) is a 2-local subgroup. If \(T = O_2(H_a) \) is semiregular on \(Ω = |Ω| \), then Shult's Fusion Theorem (see [5]) implies that H has a regular normal subgroup, or \(N ≤ H ≤ Aut(N) \), where N is isomorphic to PSL_2(2^a), PSU_3(2^a), or Sz(2^{2a+1}) in its standard 2-transitive permutation representation. (We need Shult’s result only in the case \(O_2(G_a) ∈ \text{Syl}_2(G) \). This special case follows from Suzuki’s work.

Received by the editors July 28, 1972.

Copyright © 1973, American Mathematical Society

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
on finite groups with independent Sylow 2-subgroups [7].) If \(T \) is not semiregular, then work of O'Nan [6] implies that \(H \) has a regular normal subgroup or \(N \trianglelefteq H \leq \text{Aut}(N) \), where \(N \simeq \text{PSL}_n(2^a) \). Since \(G \) has no regular normal subgroup and
\(O_2(G) \) is a Sylow 2-subgroup of \(G \), the only possibility is \(N \trianglelefteq G \leq \text{Aut}(N) \), where \(N \simeq \text{PSL}_2(2^a), \text{PSU}_3(2^a), \text{or Sz}(2^{2a+1}) \). In these cases one easily finds a prime \(p \) and \(S \in \text{Syl}_p(G) \) so that \(N(S) \) has no supplement \(D \in \mathcal{D} \). For example, if \(G \simeq \text{PSL}_2(4) \) take \(p = 3 \), and if \(G \simeq \text{PGL}_2(4) \) take \(p = 2 \).

Remark. If \(G \simeq \text{PSL}_2(2^a) \) and \(S \in \text{Syl}_2(G) \), then \(N(S) \) has a cyclic complement of odd order.

Theorem 2. If \(G \) is \(\mathcal{D} \)-supplemented then every chief factor of \(G \) of odd order is cyclic.

Proof. Let \(G \) be a counterexample of minimal order. A result of Huppert [4, VI. 8.6] implies that \(\Phi(G) = 1 \). \(G \) has a unique minimal normal subgroup \(M \). Since \(G \) is solvable, \(M \) is an elementary abelian \(p \)-group. \(p \) is odd. Set \(P = O_p(G) \). \(P \) is elementary abelian since \(\Phi(P) \leq \Phi(G) = 1 \).

There is a prime \(q \neq p \) and a \(q \)-group \(1 \neq Q \subset G \) so that \(PQ \trianglelefteq G \). \(P = [P, Q] \times C_P(Q) \). Since \([P, Q] \neq 1 \) and \(C_P(Q) \) and \([P, Q] \) are normal in \(G \), \(C_P(Q) = 1 \). \(G \) is a split extension of \(P \) by \(N(Q) \). If \(Q \trianglelefteq Q_1 \in \text{Syl}_q(G) \), then
\(N(Q) \geq N(Q_1) \). Consequently, \(N(Q) \) has a supplement \(D \in \mathcal{D} \). \(D \) contains an element \(x \) of order \(p^m = |P| \). The image \(\bar{x} \) of \(x \) in \(\bar{G} = G/P \) has order at least \(p^{m-1} \). Since \(\bar{G} \) is isomorphic to a subgroup of \(\text{GL}_m(p) \), \(pm > p^{m-1} \). Hence, \(m = 2 \). \(G \) contains an element of order \(p^2 \), and so \(p \) divides \(|\bar{G}| \). But \(O_p(\bar{G}) = 1 \) and \(\bar{G} \) is solvable. The only possibility is \(p = 3 \) and \(\bar{G} \simeq \text{SL}_2(3) \) or \(\text{GL}_2(3) \). Then the normalizer of \(S \in \text{Syl}_2(G) \) has index 9 or 27 in \(G \). However, \(G \) contains no elements of order 9, a final contradiction.

Let \(\mathcal{D}^* \) denote the class of finite groups \(D \) which are the product of a cyclic group \(T \) of odd order and a cyclic, dihedral, semidihedral, or generalized quaternion 2-group \(S \). \(T \) is a Hall 2'-subgroup of \(D \) and \(S \in \text{Syl}_2(D) \). \(D \in \mathcal{D}^* \) implies \(D \in \mathcal{D} \), so that \(\mathcal{D}^* \)-supplemented groups are solvable. Buchthal [1] has shown that certain solvable \(\mathcal{D}^* \)-supplemented groups are either supersolvable or have \(\Sigma_4 \) as a homomorphic image.

Theorem 3. If \(G \) is \(\mathcal{D}^* \)-supplemented, then \(G \) contains a normal subgroup \(N \) such that every \(G \)-composition factor of \(N \) is cyclic and \(G/N \) is isomorphic to 1, \(A_4, \Sigma_4, \) or one of the groups \(\Gamma_1, \Gamma_2, \Gamma_3 \) defined below.

The group \(\Gamma_1 \) is defined as follows. Let \(W \) be an elementary abelian group of order 16. Choose \(g \in \text{Aut}(W) \) so that \(|g| = 3 \) and \(C_w(g) = 1 \). Let \(S \) be a Sylow 2-subgroup of \(N_{\text{Aut}(W)}(\langle g \rangle) \simeq \Gamma L_2(4) \). \(S \) and \(g \) generate a group \(X \) of order 24.
Define Γ_1 to be the split extension of W by X. The normalizer $N(R)$ of $R \in \text{Syl}_3(\Gamma_1)$ has index 16 in Γ_1. The only supplements $D \in \mathcal{D}^*$ for $N(R)$ are semidihedral or generalized quaternion groups of order 16. (These facts are established in the proof of Theorem 3.)

Suppose $W \cong \mathbb{Z}_4 \times \mathbb{Z}_4$. Let a and b be generators of W. Define automorphisms g, x, z, and s of W as follows.

1. $a^g = b^{-1}$, $b^g = ab^{-1}$,
2. $a^z = a^{-1}$, $b^z = b^{-1}$,
3. $a^x = ab^2$, $b^x = a^2b^{-1}$,
4. $a^s = b$, $b^s = a$.

The element $g \in \text{Aut}(W)$ has order 3, while x, z, and s are involutions.

$C_{\text{Aut}(W)}(g) = \langle g, x, z \rangle$ and $N_{\text{Aut}(W)}(\langle g \rangle) = \langle g, x, z, s \rangle = X$. Γ_2 is the split extension of W by X. $S = \langle a, b, x, z, s \rangle$ is a Sylow 2-subgroup of Γ_2. S contains no elements of order 16, and every element of order 8 in S is conjugate to sa.

$N_S(\langle sa \rangle)$ is a split extension of (sa) by the 4-group (zb, a^2). (sa, zb) and (sa, a^2) are complements for $N_S(\langle g \rangle)$ in S, while $(sa, zba) \cap N_S(\langle g \rangle) = \langle sz \rangle$. Also, (sa, zb) is semidihedral, and (sa, a^2) is neither dihedral nor semidihedral. These facts yield the following result.

Lemma 1. Γ_2 is \mathcal{D}^*-supplemented. Any proper subgroup of Γ_2 which contains (a, b, g) and is \mathcal{D}^*-supplemented is conjugate in Γ_2 to $\langle a, b, g, z, s \rangle$. Moreover, if $\Gamma = \Gamma_2$ or Γ_3 and $R \in \text{Syl}_3(\Gamma)$, then $N(R)$ has index 16 in Γ and the only supplements $D \in \mathcal{D}^*$ for $N(R)$ are semidihedral groups of order 16.

Proof of Theorem 3. In the following discussion, Γ denotes any one of the groups Γ_1, Γ_2, or Γ_3.

Let G be a counterexample of minimal order. Choose $N \trianglelefteq G$ of minimal order so that $G/N \cong 1$, A_4, Σ_q, or Γ. (E.g., if G has both Σ_4 and Γ as homomorphic images, choose N such that $G/N \cong \Gamma$.) N contains a unique minimal normal subgroup M of G. M is not cyclic. Theorem 2 implies that M is a 2-group. Set $P = O_2(N)$. $C_N(P) \subseteq P$ and $O_2(M) = 1$. Suppose $\Phi(P) \neq 1$. Then by induction each G-composition factor of $P/\Phi(P)$ is cyclic, and so $G/C_{G}(P/\Phi(P))$ is a 2-group. Hence, $G/C_{G}(P)$ is a 2-group [3, 5.1.4], in which case $P \cap Z(G) \neq 1$. This contradiction implies that P is elementary abelian.

Assume $P \neq N$. Then there is a prime $q \neq 2$ and a q-group $1 \neq Q < N$ so that QP is normal in G. $C_{G}(Q) = 1$. Let $|P| = 2^m$. If $C_{G}(P) = P$, then the proof of Theorem 2 shows that $2^{m-2} < 2m$, or $m \leq 5$. If $m < 4$, there is no choice for q. If $m = 5$, then $q = 31$. But the normalizer in $GL_2(2)$ of a group of order 31 has order $31 \cdot 5$. It follows that $P \in \text{Syl}_2(G)$, and so $N(Q)$ is not \mathcal{D}^*-supplemented. Thus, the only possibility is $m = 4$ and $q = 3$ or 5. $N(Q)$ has a supplement D.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
which is cyclic, dihedral, semidihedral, or generalized quaternion of order at least $\left| P \right| = 16$. D has no normal elementary abelian subgroup of order 4, and so $\left| D \cap P \right| \leq 2$. Thus, DP/P has order at least 8. The normalizer in $GL_4(2)$ of a cyclic group of order 5 is metacyclic group of order 60. Consequently, $q = 3$. Since $C_P(Q) = 1$, the normalizer in $GL_4(2)$ of Q is $\Gamma L_2(4)$. Since G is solvable, the only possibility is that $N(Q)$ is a split extension of Q by D_8 or Σ_4. In either case $O_2(G/P) \cong Z_2 \times Z_2 \cong C_p(O_2(G/P))$. By induction G/P acts reducibly on $P/C_G(O_2(G/P))$, which is not the case. Therefore, $C_G(P)$ properly contains P, whence $N \neq G$. There is a group $P < K \leq G$ so that $K/P \cong Z_2 \times Z_2$, $C_P(Q) = 1$ and $[K,Q] \leq P$ imply $C_K(Q) \cong Z_2 \times Z_2$ [3, 5.3.15]. $C_K(Q) = C_K(PQ)$ is normal in G. Then $K \leq C(P)$ implies $K = P \times C_K(Q)$, and so K is elementary abelian.

If $X \leq G$ let \bar{X} denote the image of X in $\bar{G} = G/C_K(Q)$. By induction G has a normal subgroup $H \supset C_K(Q)$ so that $\bar{G}/\bar{H} \cong 1$, A_4, Σ_4 or Γ, and each G composition factor of \bar{H} is cyclic. From the facts that M is noncyclic, $M \cap C_K(Q) = 1$, and M is the only minimal normal subgroup of G contained in N, it follows that N is isomorphic to a subgroup of \bar{G}/\bar{H}. Thus, $Q \cong Z_3$. Choose $S \in Syl_3(G)$.

Suppose $G/N \cong \Gamma$. Then $G : N(S) \geq 64$. Consequently, there is a cyclic, dihedral, semidihedral, or generalized quaternion group D of order at least 64 which is a supplement for $N(S)$. For $X \leq G$ let \bar{X} denote the image of X in $\bar{G} = G/N \cong \Gamma$. Then $S \in Syl_3(G)$ and $N_G(S) = N_G(S)$. Thus, $\bar{D} \cong D/D \cap N$ is a supplement for $N_G(S)$. But $D \cap N \neq 1$ since Γ has exponent 24. Hence, \bar{D} is cyclic or dihedral, whereas a D^*-supplement for $N_G(S)$ in $\bar{G} \cong \Gamma$ must be semidihedral or generalized quaternion of order 16. This contradiction implies $G/N \cong A_4$ or Σ_4, whence $N \cong A_4$, or Σ_4. Then $S \cong Z_3 \times Z_3$, $G : N(S) = 16$, and $|G/K|$ divides 36. A Sylow 2-subgroup of G/K is not cyclic of order 4, and so the exponent of G divides 12. Hence, $G(N(S))$ does not have a supplement $D \in D^*$.

The only remaining case is $P = N$. Then $G \neq N$ and there is an element $g \in G$ of order 3. Assume $G/N \cong \Gamma$. $C_G(N)$ does not contain g, for otherwise $G/C_G(N)$ is a 2-group, and $N \cap Z(G) \neq 1$. Hence, $N : C_N(g) \geq 4$, and so $G : N(\langle g \rangle) \geq 64$. Since G has exponent 24 or 48, $N(\langle g \rangle)$ has no supplement $D \in D^*$.

Thus, $G/N \cong A_4$ or Σ_4. Set $K = O_2(G)$. $K/N \cong Z_2 \times Z_2$. Suppose $[N,K] = 1$. Then $C_N(g) = 1$, and by induction $|N| = 4$. A supplement $D \in D^*$ for $N(\langle g \rangle)$ has order at least 16, whence $|D \cap K| \geq 8$. Since K has exponent 2 or 4, $D \cap K$ is dihedral or quaternion. Thus, K is a nonabelian group of order 16 and exponent 4. According to Burnside [2, p. 146] $|K'| = 2$, and so N contains a subgroup of order 2 which is normal in G. This contradiction implies $[N,K] = U \neq 1$.

By induction each G-composition factor of N/M is cyclic of order 2. Consequently, g centralizes N/M. Then $K = N[K, g]$ also centralizes N/M, so $U \leq M$. Thus, $U = M$ and K centralizes U. Then $C_U(g) = 1$. By induction
$|U| = 4$. Set $V = C_N(g)$, so that $N = V \times U$. Choose $H < K$ such that $H : N = 2$.
$C_N(H)$ contains U and therefore is normalized by g. Then $C_N(H) = C_N(H^g) = C_N(H^u) = C_N(K)$. Since $C_N(K) \cap C_N(g) = 1$, $C_N(H) = U$. Consequently, $|N| = 8$ or 16.

Suppose there is an element $x \in K$ so that the image x of x in $K = K/U$ has order 4. $x^2 \in N$ since $K/N \simeq Z_2 \times Z_2$, but $x \notin N$ since N is elementary. Hence, $C_K(x^2)$ properly contains N, which is not the case. Consequently, K/U is elementary abelian, and so $K/U = C_K(U(g) \times [K/U, g])$. Since $U = [U, g] < W = [K, g]$ and $C_U(g) = 1$, K is a split extension of W by V. W has order 16 and is normal in G. Since W has exponent at most 4 and $|W'| \neq 2$, W is abelian.

Let $R = (g)$. G is a split extension of W by $N(R)$. $N(R)$ acts faithfully on W. $N(R)$ has a supplement D which is cyclic, dihedral, semidihedral, or generalized quaternion. Since K has exponent 4, the only possibility is $G/N \simeq \Sigma_4$. D is a complement for $N(R)$, and D is dihedral, semidihedral, or generalized quaternion of order 16. Suppose $W \simeq Z_4 \times Z_4$. Then Lemma 1 yields $G \simeq \Gamma_2$ or Γ_3. This contradiction implies that W is elementary abelian of order 16, and G is isomorphic to a subgroup of Γ_1. The nonidentity elements of $N \cup W$ have order 2, while all elements in $K - (N \cup W)$ have order 4. Since D has no normal 4-group, $D \cap N = D \cap W \simeq Z_2$. Hence, $D \cap K$ is a quaternion group, and G is semidihedral or generalized quaternion of order 16. Moreover, $|DW| = |D||W|/|D \cap W| = 2^7$, so that $|G| = 3 \cdot 2^7 = |\Gamma_1|$. Then $G \simeq \Gamma_1$, a final contradiction.

Thus, G has a normal subgroup N so that every G-composition factor of N is cyclic and $G/N \simeq 1, A_4, \Sigma_4, \Gamma_1, \Gamma_2,$ or Γ_3. N is the join of all groups $H \subseteq G$ which are supersolvably embedded in G, and so N is unique.

Acknowledgement. The author would like to thank Professor W. R. Scott for several helpful conversations during the preparation of this article.

REFERENCES

7. M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. of Math. (2) 80 (1964), 58–77. MR 29 #145.

DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIRGINIA 24061