Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Existence theorems for matroid designs


Author: H. Peyton Young
Journal: Trans. Amer. Math. Soc. 183 (1973), 1-35
MSC: Primary 05B30
DOI: https://doi.org/10.1090/S0002-9947-1973-0406834-X
MathSciNet review: 0406834
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A study is made of matroids in which the hyperplanes have equal cardinality. Fundamental constructions of such matroids are exhibited, and existence theorems are proved for large parametric classes of them.


References [Enhancements On Off] (What's this?)

  • [1] R. C. Bose and S. S. Shrikhande, On the construction of sets of mutually orthogonal latin squares and the falsity of a conjecture of Euler, Trans. Amer. Math. Soc. 95 (1960), 191-209. MR 22 #2557. MR 0111695 (22:2557)
  • [2] K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Statist. 23 (1952), 426-434. MR 14, 125. MR 0049146 (14:125b)
  • [3] H. Crapo and G. C. Rota, On the foundations of combinatorial theory: Combinatorial geometries, M.I.T., Cambridge, Mass., 1970. MR 0290980 (45:74)
  • [4] P. Dembowski and A. Wagner, Some characterizations of finite projective spaces, Arch. Math. 11 (1960), 465-469. MR 26 #660. MR 0143095 (26:660)
  • [5] M. Hall, Jr., Combinatorial theory, Blaisdell, Waltham, Mass., 1967. MR 37 #80. MR 0224481 (37:80)
  • [6] H. Hanani, On quadruple systems, Canad. J. Math. 12 (1960), 145-147. MR 22 #2558. MR 0111696 (22:2558)
  • [7] -, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961), 361-386. MR 29 #4161. MR 0166888 (29:4161)
  • [8] -, On some tactical configurations, Canad. J. Math. 15 (1963), 702-722. MR 28 #1136. MR 0157908 (28:1136)
  • [9] W. Kantor, Characterizations of finite projective and affine spaces, Canad. J. Math. 21 (1969), 64-75. MR 38 #4338. MR 0236040 (38:4338)
  • [10] U. S. R. Murty, Equicardinal matroids and finite geometries, Calgary Internat. Conf. Combinatorial Structures and their Applications, Gordon and Breach, New York, 1969.
  • [11] W. T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Standards Sec. B 69B (1965), 1-47. MR 31 #4023. MR 0179781 (31:4023)
  • [12] H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935), 509-533. MR 1507091
  • [13] E. Witt, Über Steinersche Systeme, Abh. Math. Sem. Univ. Hamburg 12 (1938), 265-275.
  • [14] H. P. Young, U. S. R. Murty and J. Edmonds, Equicardinal matroids and matroid designs, Proc. Second Annual Chapel Hill Conf. on Combinatorial Math. and Appl., Chapel Hill, N. C., 1970. MR 0266782 (42:1685)
  • [15] H. P. Young and J. Edmonds, Matroid designs, J. Res. Nat. Bur. Standards Sect. B 77B (1973). MR 0382041 (52:2929)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 05B30

Retrieve articles in all journals with MSC: 05B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0406834-X
Keywords: Matroid, block design, finite projective and affine geometries
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society