Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The commutant of analytic Toeplitz operators


Authors: James A. Deddens and Tin Kin Wong
Journal: Trans. Amer. Math. Soc. 184 (1973), 261-273
MSC: Primary 47B35
DOI: https://doi.org/10.1090/S0002-9947-1973-0324467-0
MathSciNet review: 0324467
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the commutant of an analytic Toeplitz operator. For $ \phi \;\;{H^\infty }$, let $ \phi = \chi F$ be its inner-outer factorization. Our main result is that if there exists $ \lambda \;\epsilon \;{\text{C}}$ such that X factors as $ \chi = {\chi _1}{\chi _2} \cdots {\chi _n}$, each $ {\chi _i}$ an inner function, and if $ F - \lambda $ is divisible by each $ {\chi _i}$, then $ \{ {T_\phi }\} ' = \{ {T_\chi }\} ' \cap \{ {T_F}\} '$. The key step in the proof is Lemma 2, which is a curious result about nilpotent operators. One corollary of our main result is that if $ \chi (z) = {z^n},n \geq 1$, then $ \{ {T_\phi }\} ' = \{ {T_\chi }\} ' \cap \{ {T_F}\} '$, another is that if $ \phi \;\epsilon {H^\infty }$ is univalent then $ \{ {T_\phi }\} ' = \{ {T_z}\} '$. We are also able to prove that if the inner factor of $ \phi $ is $ \chi (z) = {z^n},n \geq 1$, then $ \{ {T_\phi }\} ' = \{ {T_{{z^s}}}\} '$ where s is a positive integer maximal with respect to the property that $ {z^n}$ and $ F(z)$ are both functions of $ {z^s}$. We conclude by raising six questions.


References [Enhancements On Off] (What's this?)

  • [1] J. Ball, Work on a conjecture of Nordgren (preprint).
  • [2] A. Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723-728. MR 15, 538. MR 0059483 (15:538c)
  • [3] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964), 89-102. MR 28 #3350; 30, 1205. MR 0160136 (28:3350)
  • [4] E. R. Berkson, L. A. Rubel and J. P. Williams, Totally hyponormal operators and analytic functions, Notices Amer. Math. Soc. 19 (1972), A393. Abstract #693-B11.
  • [5] R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972. MR 0361893 (50:14335)
  • [6] P. Duren, Theory of $ {H^p}$-spaces, Pure and Appl. Math., vol. 38, Academic Press, New York, 1970. MR 42 #3552. MR 0268655 (42:3552)
  • [7] P. Fillmore, Notes on operator theory, Van Nostrand Reinhold, Math. Studies, no. 30, Van Nostrand Reinhold, New York, 1970. MR 41 #2414. MR 0257765 (41:2414)
  • [8] P. R. Halmos, Capacity in Banach algebras, Indiana Univ. Math. J. 20 (1970), 855-863. MR 42 #3569. MR 0268672 (42:3569)
  • [9] P. Hartman and A. Wintner, On the spectra of Toeplitz's matrices, Amer. J. Math. 72 (1950), 359-366. MR 12, 187. MR 0036936 (12:187a)
  • [10] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Ser. in Modern Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 24 #A2844. MR 0133008 (24:A2844)
  • [11] E. Nordgren, Reducing subspaces of analytic Toeplitz operators, Duke Math. J. 34 (1967), 175-181. MR 35 #7155. MR 0216321 (35:7155)
  • [12] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517. MR 33 #590. MR 0192365 (33:590)
  • [13] A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1970), 777-788. MR 44 #4558. MR 0287352 (44:4558)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B35

Retrieve articles in all journals with MSC: 47B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0324467-0
Keywords: Analytic function, inner and outer functions, $ {H^\infty }$, $ {H^2}$, analytic Toeplitz operator, pure is ometry, commutant
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society