Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Complete topologies on spaces of Baire measure


Author: R. B. Kirk
Journal: Trans. Amer. Math. Soc. 184 (1973), 1-29
MSC: Primary 28A32; Secondary 60B05
DOI: https://doi.org/10.1090/S0002-9947-1973-0325913-9
MathSciNet review: 0325913
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let X be a completely regular Hausdorff space, let L be the linear space of all finite linear combinations of the point measures on X and let $ {M_\sigma }$ denote the space of Baire measures on X. The following is proved: If $ {M_\sigma }$ is endowed with the topology of uniform convergence on the uniformly bounded, equicontinuous subsets of $ {C^b}(X)$, then $ {M_\sigma }$ is a complete locally convex space in which L is dense and whose dual is $ {C^b}(X)$, provided there are no measurable cardinals. A complete description of the situation in the presence of measurable cardinals is also given. Let $ {M_C}$ be the subspace of $ {M_\sigma }$ consisting of those measures which have compact support in the realcompactification of X. The following result is proved: If $ {M_C}$ is endowed with the topology of uniform convergence on the pointwise bounded and equicontinuous subsets of $ C(X)$, then $ {M_C}$ is a complete locally convex space in which L is dense and whose dual is $ C(X)$, provided there are no measurable cardinals. Again the situation if measurable cardinals exist is described completely. Let M denote the Banach dual of $ {C^b}(X)$. The following is proved: If M is endowed with the topology of uniform convergence on the norm compact subsets of $ {C^b}(X)$, then M is a complete locally convex space in chich L is dense. It is also proved that $ {M_\sigma }$ is metrizable if and only if X is discrete and that the metrizability of either $ {M_C}$ or M is equivalent to X being finite. Finally the following is proved: If $ {M_C}$ has the Mackey topology for the pair $ ({M_C},C(X))$, then $ {M_C}$ is complete and L is dense in $ {M_C}$.


References [Enhancements On Off] (What's this?)

  • [1] A. D. Alexandrov, Additive set functions in abstract spaces, Mat. Sb. 8(50) (1940), 307-348; 9(51) (1941), 563-628. MR 2, 315; 3, 207. MR 0004078 (2:315c)
  • [2] R. Arens and J. Eells, On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403. MR 18, 406. MR 0081458 (18:406e)
  • [3] R. M. Dudley, Convergence of Baire measures, Studia Math. 27 (1966), 251-268. MR 34 #598. MR 0200710 (34:598)
  • [4] L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [5] G. Gould and M. Mahowald, Measures on completely regular spaces, J. London Math. Soc. 37 (1962), 103-111. MR 27 #6122. MR 0156191 (27:6122)
  • [6] E. Granirer, On Baire measures on D-topological spaces, Fund. Math. 60 (1967), 1-22. MR 34 #8165. MR 0208355 (34:8165)
  • [7] E. Hewitt, Linear functionals on spaces of continuous functions, Fund. Math. 37 (1950), 161-189. MR 13, 147. MR 0042684 (13:147g)
  • [8] M. Katětov, Measures in fully normal spaces, Fund. Math. 38 (1951), 73-84. MR 14, 27. MR 0048531 (14:27c)
  • [9] -, On a category of spaces, General Topology and its Relations to Modern Analysis (Proc. Sympos., Prague, 1961), Academic Press, New York; Publ. House Czech. Acad. Sci., Prague, 1962, pp. 226-229. MR 32 #4644. MR 0187190 (32:4644)
  • [10] -, On certain projectively generated continuity structures, Celebrazioni archimedee de secolo, Simposio di topologia, 1964, pp. 47-50.
  • [11] -, Projectively generated continuity structures: A correction, Comment. Math. Univ. Carolinae 6 (1965), 251-255. MR 36 #2110. MR 0219027 (36:2110)
  • [12] R. B. Kirk, Measures in topological spaces and B-compactness, Nederl. Akad. Wetensch. Proc. Ser. A 72 = Indag. Math. 31 (1969), 172-183. MR 39 #7410. MR 0246104 (39:7410)
  • [13] -, Locally compact, B-compact spaces, Nederl. Akad. Wetensch. Proc. Ser. A 72 = Indag. Math. 31 (1969), 333-344. MR 41 #9201. MR 0264609 (41:9201)
  • [14] -, Algebras of bounded real-valued functions, Nederl. Akad. Wetensch. Proc. Ser. A 75 = Indag. Math. 34 (1972), 443-463. MR 0320725 (47:9260a)
  • [15] -, A note on the Mackey topology for $ ({C^b}{(X)^\ast},{C^b}(X))$, Pacific J. Math. (to appear).
  • [16] J. D. Knowles, Measures in topological spaces, Proc. London Math. Soc. 17 (1967), 139-156. MR 34 #4441. MR 0204602 (34:4441)
  • [17] G. Köthe, Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960; English transl., Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24 #A411; 40 #1750.
  • [18] W. Moran, The addilivity of measures on completely regular spaces, J. London. Math. Soc. 43 (1968), 633-639. MR 37 #4225. MR 0228645 (37:4225)
  • [19] -, Measures on metacompact spaces, Proc. London Math. Soc. 20 (1970), 507-524. MR 0437706 (55:10630)
  • [20] E. Marczewski and R. Sikorski, Measures in non-separable metric spaces, Colloq. Math. 1 (1948), 133-139. MR 10, 23. MR 0025548 (10:23f)
  • [21] J. S. Pym, Positive functionals, additivily and supports, J. London Math. Soc. 39 (1964), 391-399. MR 29 #2641. MR 0165357 (29:2641)
  • [22] V. Ptak, Algebraic extensions of topological spaces, Contributions to Extension Theory of Topological Structures, (Proc. Sympos., Berlin, 1967), Deutsch. Verlag Wissenschaften, Berlin, 1969, pp. 179-188. MR 40 #681. MR 0247415 (40:681)
  • [23] D. A. Raĭkov, Free locally convex spaces for uniform spaces, Mat. Sb. 63 (105) (1964), 582-590. (Russian) MR 28 #5320. MR 0162120 (28:5320)
  • [24] F. D. Sentilles, and R. F. Wheeler, Additivity of functionals and the strict topology (unpublished).
  • [25] V. S. Varadarajan, Measures on topological spaces, Mat. Sb. 55 (97) (1961), 35-100; English transl., Amer. Math. Soc. Transl. (2) 48 (1965), 161-228. MR 26 #6342. MR 0148838 (26:6342)
  • [26] A. P. Robertson and W. J. Robertson, Topological vector spaces, Cambridge Univ. Press, New York, 1964. MR 28 #5318. MR 0162118 (28:5318)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A32, 60B05

Retrieve articles in all journals with MSC: 28A32, 60B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0325913-9
Keywords: Measures in topological spaces, D-spaces, equicontinuous families, complete locally convex topologies, approximation of measures
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society