Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Smoothness of certain metric projections on Hilbert space


Author: Richard B. Holmes
Journal: Trans. Amer. Math. Soc. 184 (1973), 87-100
MSC: Primary 41A65
DOI: https://doi.org/10.1090/S0002-9947-1973-0326252-2
MathSciNet review: 0326252
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A study is made of differential properties of the distance function and the metric projection defined by a closed convex subset of Hilbert space. The former mapping is also considered within the context of more general Banach spaces.


References [Enhancements On Off] (What's this?)

  • [1] E. Asplund, Chebyshev sets in Hilbert space, Trans. Amer. Math. Soc. 144 (1969), 235-240. MR 40 #6238. MR 0253023 (40:6238)
  • [2] E. Asplund and R. Rockafellar, Gradients of convex functions, Trans. Amer. Math. Soc. 139 (1969), 443-467. MR 39 #1968. MR 0240621 (39:1968)
  • [3] H. Federer, Geometrie measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York, 1969. MR 41 #1976. MR 0257325 (41:1976)
  • [4] R. Holmes, A course on optimization and best approximation, Springer-Verlag, Berlin and New York, 1972. MR 0420367 (54:8381)
  • [5] J. Kruskal, Two convex counterexamples: a discontinuous envelope function and a nondifferentiable nearest-point mapping, Proc. Amer. Math. Soc. 23 (1969), 697-703. MR 41 #4385. MR 0259752 (41:4385)
  • [6] J. Moreau, Proximité et dualité dans un espace Hilbertian, Bull. Soc. Math. France 93 (1965), 273-299. MR 34 #1829. MR 0201952 (34:1829)
  • [7] R. Rockafellar, Convex functions, monotone operators and variational inequalities, Theory and Applications of Monotone Operators, (Proc. NATO Advanced Study Institute, Venice, 1968), Edizioni ``Oderisi", Gubbio, 1969, pp. 35-65. MR 41 #6028. MR 0261415 (41:6028)
  • [8] M. Vaĭnberg, Some questions of the differential calculus in linear spaces, Uspehi Mat. Nauk 7 (1952), no. 4 (50), 55-102. (Russian) MR 14, 384. MR 0050800 (14:384c)
  • [9] E. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, Contributions to Nonlinear Functional Analysis (E. Zarantonello, Ed.), Academic Press, New York and London, 1971, pp. 237-424. MR 0388177 (52:9014)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A65

Retrieve articles in all journals with MSC: 41A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0326252-2
Keywords: Best approximation, distance function, metric projection, Hilbert space, implicit function theorem, flat point
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society