A metric characterization of cells

Author:
Ellard Nunnally

Journal:
Trans. Amer. Math. Soc. **184** (1973), 317-325

MSC:
Primary 54F65; Secondary 54E45

MathSciNet review:
0326693

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We examine finite dimensional compact convex metric spaces each having the property that the union of two line segments in the space, having more than one point in common, is a line segment. The question has been asked (Borsuk; Bing) whether each such space is a cell. The answer is yes if the dimension of the space is (Lelek and Nitka) or 3 (Rolfsen). Here we provide an affirmative answer for arbitrary finite dimension provided the space has the additional property that the join of any point to any line segment in the space is a convex set.

**[1]**R. H. Bing,*Partitioning a set*, Bull. Amer. Math. Soc.**55**(1949), 1101–1110. MR**0035429**, 10.1090/S0002-9904-1949-09334-5**[2]**J. L. Kelley,*Hyperspaces of a continuum*, Trans. Amer. Math. Soc.**52**(1942), 22–36. MR**0006505**, 10.1090/S0002-9947-1942-0006505-8**[3]**Dale Rolfsen,*Strongly convex metrics in cells*, Bull. Amer. Math. Soc.**74**(1968), 171–175. MR**0226591**, 10.1090/S0002-9904-1968-11926-3**[4]**-,*Geometric methods in topological spaces*, Proc. Arizona State Univ. Topological Conf., Tempe, Ariz., 1967, pp. 250-257.**[5]**R. M. Schori,*Hyperspaces and symmetric products of topological spaces*, Fund. Math.**63**(1968), 77–88. MR**0232336****[6]**R. Schori and J. E. West,*2^{𝐼} is homeomorphic to the Hilbert cube*, Bull. Amer. Math. Soc.**78**(1972), 402–406. MR**0309119**, 10.1090/S0002-9904-1972-12917-3**[7]**A. Lelek and W. Nitka,*On convex metric spaces. I*, Fund. Math.**49**(1960/1961), 183–204. MR**0124882**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54F65,
54E45

Retrieve articles in all journals with MSC: 54F65, 54E45

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1973-0326693-3

Article copyright:
© Copyright 1973
American Mathematical Society