Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

On arbitrary sequences of isomorphisms in $ R\sp{m}\rightarrow R\sp{m}$


Author: Charles C. Pugh
Journal: Trans. Amer. Math. Soc. 184 (1973), 387-400
MSC: Primary 58F10
MathSciNet review: 0326778
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper a new, clean proof of an algebraic theorem needed in ordinary differential equations is presented. The theorem involves the existence and uniqueness of a ``complete splitting'' for some subsequence of an arbitrary sequence of isomorphisms of Euclidean m-space. In the positive-definite case, a complete splitting is a limit condition on eigenspaces and eigenvalues.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F10

Retrieve articles in all journals with MSC: 58F10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1973-0326778-1
PII: S 0002-9947(1973)0326778-1
Article copyright: © Copyright 1973 American Mathematical Society