Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the singular boundary value problem for elliptic equations


Author: Kazunari Hayashida
Journal: Trans. Amer. Math. Soc. 184 (1973), 205-221
MSC: Primary 35J25
DOI: https://doi.org/10.1090/S0002-9947-1973-0328320-8
MathSciNet review: 0328320
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The operator $ \mathcal{L}$ is elliptic and of second order in a domain $ \Omega $ in $ {R^N}$. We consider the following boundary value problem: $ \mathcal{L}u = f$ in $ \Omega $ and $ \mathcal{B}u = 0$ on $ \partial \Omega $, where $ \mathcal{B} = ad/dn + \beta $ (d/dn is the conormal derivative on $ \partial \Omega $). The coefficient $ \alpha $ is assumed to be nonnegative. However, $ \alpha $ may vanish partly on $ \partial \Omega $. Then the regularity of the weak solutions for the above problem is shown by the variational method.


References [Enhancements On Off] (What's this?)

  • [1] M. S. Baouendi and C. Goulaouic, Régularité et théorie spectrale pour une class d'opérateurs elliptiques dégénérés, Arch. Rational Mech. Anal. 34 (1969), 361-378. MR 40 #3085. MR 0249844 (40:3085)
  • [2] R. Courant, Methods of mathematical physics. Vol. II: Partial differential equations, Interscience, New York, 1962. MR 25 #4216.
  • [3] S. Itô, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math. 27 (1957), 55-102. MR 20 #4702. MR 0098240 (20:4702)
  • [4] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes. II, Ann. Inst. Fourier (Grenoble) 11 (1961), 137-178. MR 26 #4047. MR 0146525 (26:4047)
  • [5] T. Matsuzawa, Sur les équations $ {u_{tt}} + {t^\alpha }{u_{xx}} = f(\alpha \geq 0)$, Nagoya Math. J. 42 (1971), 43-55. MR 44 #1923. MR 0284699 (44:1923)
  • [6] V. G. Maz ja, The degenerate problem with oblique derivative, Uspehi Mat. Nauk 25 (1970), 275-276. (Russian) MR 41 #4031. MR 0259393 (41:4031)
  • [7] L. Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math. 8 (1955), 649-675. MR 17, 742. MR 0075415 (17:742d)
  • [8] N. Shimakura, Problèmes aux limites généraux du type elliptique dégénéré, J. Math. Kyoto Univ. 9 (1969), 275-335. MR 40 #7628. MR 0254419 (40:7628)
  • [9] M. I. Višik and V. V. Grusin, Elliptic boundary value problems degenerating on a submanifold of the boundary, Dokl. Akad. Nauk SSSR 190 (1970), 255-258 = Soviet Math. Dokl. 11 (1970), 60-64. MR 41 #7291. MR 0262686 (41:7291)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J25

Retrieve articles in all journals with MSC: 35J25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0328320-8
Keywords: Elliptic operator, boundary operator, regularity problem, elliptic regularization, Sobolev space, variational method
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society