Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Universal generators for varieties of nuclear spaces


Author: B. Rosenberger
Journal: Trans. Amer. Math. Soc. 184 (1973), 275-290
MSC: Primary 46A05
DOI: https://doi.org/10.1090/S0002-9947-1973-0328522-0
MathSciNet review: 0328522
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that a product of several copies of $ \Lambda ({\beta ^\phi })$ is a universal $ \phi $-nuclear space if the power series space $ \Lambda ({\beta ^\phi })$ with $ \beta _k^\phi = - \log ({\phi ^{ - 1}}(1/\sqrt {k + 1} )),k\;\epsilon \;\{ 0,1,2, \cdots \} $, is $ \phi $-nuclear; here $ \phi = [0,\infty ) \to [0,\infty )$ is a continuous, strictly increasing subadditive function with $ \phi (0) = 0$. In case $ \Lambda ({\beta ^\phi })$ is not $ \phi $-nuclear the sequence space $ \Lambda (l_\phi ^ + )$ is a $ \phi $-nuclear space with the property that every $ \phi $-nuclear space is isomorphic to a subspace of a product of $ \Lambda (l_\phi ^ + )$ if $ {\lim\;\sup _{t \to 0}}{(\phi (t))^{ - 1}}\phi (\sqrt t ) < \infty $.


References [Enhancements On Off] (What's this?)

  • [1] C. Bessaga, A. Pełczyński and S. Rolewicz, Some properties of the norm of Fspaces, StudiaMath. 16 (1957), 183-192. MR 20 #6021. MR 0099582 (20:6021)
  • [2] -, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 677-683. MR 24 #A2219. MR 0132374 (24:A2219)
  • [3] J. Diestel, S. A. Morris and S. A. Saxon, Varieties of linear topological spaces, Trans. Amer. Math. Soc. (to appear). MR 0316992 (47:5540)
  • [4] E. Dubinsky and M. S. Ramanujan, On $ \lambda $-nuclearity, Mem. Amer. Math. Soc. No. 128 (1972). MR 0420215 (54:8229)
  • [5] G. Köthe, Topologische lineare Räume. I, 2nd ed., Die Giundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1966; English transl., Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 33 #3069; 40 #1750.
  • [6] -, Über nukleare Folgenräume, Studia Math. 31 (1968), 267-271. MR 38 #4946. MR 0236651 (38:4946)
  • [7] T. Kōmura and Y. Kōmura, Über die Einbettung der nuklearen Räume in $ {(s)^A}$, Math. Ann. 162 (1965/66), 284-288. MR 32 #6190. MR 0188754 (32:6190)
  • [8] A. Martineau, Sur une properiété universelle de l'espace des distributions de M. Schwartz, C. R. Acad. Sci. Paris 259 (1964), 3162-3164. MR 29 #6306. MR 0169051 (29:6306)
  • [9] S. Mazur and W. Orlicz, On some classes of linear spaces, Studia Math. 17 (1958), 97-119. MR 20 #4780. MR 0098319 (20:4780)
  • [10] A. Pietsch, Nukleare lokalkonvexe Räume, Akademie-Verlag, Berlin, 1965; Russian transl., Mir, Moscow, 1967. MR 31 #6114; 36 #4314. MR 0181888 (31:6114)
  • [11] M. S. Ramanujan, Power series spaces $ \Lambda (\alpha )$ and associated $ \Lambda (\alpha )$-nuclearlity, Math. Ann. 189 (1970), 161-168. MR 42 #5003. MR 0270110 (42:5003)
  • [12] B. Rosenberger, F-Normideale von Operatoren in normierten Räumen, Berichte Ges. Math. Datenv. Bonn 44 (1971), 1-40. MR 0438166 (55:11085)
  • [13] -, $ \phi $-nukleare Räume, Math. Nachr. 52 (1972), 147-160. MR 0308725 (46:7839)
  • [14] B. Rosenberger and E. Schock, Über nukleare (F)-Räume mit Basis, Compositio Math. 25 (1972), 207-219. MR 0315390 (47:3939)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A05

Retrieve articles in all journals with MSC: 46A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0328522-0
Keywords: Nuclear spaces, sequence spaces, variety, universal generator
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society