Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Absolute convergence of series of Fourier coefficients


Author: James R. McLaughlin
Journal: Trans. Amer. Math. Soc. 184 (1973), 291-316
MSC: Primary 42A28; Secondary 42A56
DOI: https://doi.org/10.1090/S0002-9947-1973-0336203-2
MathSciNet review: 0336203
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article the author unifies and generalizes practically all known sufficiency results for absolute convergence of series of Fourier coefficients that are given in terms of the integrated modulus of continuity, best approximation, or bounded pth variation. This is done for the trigonometric, Walsh, Haar, Franklin, and related systems as well as general orthonormal systems. Many of the original proofs of previous results relied upon special properties of the trigonometric, Haar, and other systems and were done independently of one another. Also, several authors have proved results which at the time they believed to be generalizations of past results, but are, in fact, corollaries of them. The present author will expose underlying principles and illustrate their usefulness.


References [Enhancements On Off] (What's this?)

  • [1] G. Alexits, Konvergenzprobleme der Orthogonalreihen, Akad. Kiadó, Budapest, 1960; English transl., Internat. Series of Monographs Pure Appl. Math., vol. 20, Pergamon Press, New York, 1961. MR 28 #5292; 36 #1911. MR 0162091 (28:5292)
  • [2] N. Bari, Trigonometric series. I, II, Fizmatgiz, Moscow, 1961; English transl., Macmillan, New York; Pergamon Press, Oxford, 1964. MR 23 #A3411; 30 #1347. MR 0126115 (23:A3411)
  • [3] S. L. Bljumin and B. D. Kotljar, Hilbert-Schmidt operators and the absolute convergence of Fourier series, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 209-217 = Math. USSRIzv. 4 (1970), 215-223. MR 0306979 (46:6100)
  • [4] S. V. Bočkarev, Absolute convergence of Fourier series over complete orthonormal systems, Uspehi Mat. Nauk 27 (1972), no. 2 (164), 53-76. (Russian) MR 0394024 (52:14830)
  • [5] -, On absolute convergence of Fourier series, Dokl. Akad. Nauk SSSR 202 (1972), 995-997 = Soviet Math. Dokl. 13 (1972), 225-227. MR 45 #4048. MR 0294980 (45:4048)
  • [6] H. E. Chrestenson, A class of generalized Walsh functions, Pacific J. Math. 5 (1955), 17-31. MR 16, 920. MR 0068659 (16:920c)
  • [7] Z. Ciesielski, Properties of the orthonormal Franklin system, Studia Math. 23 (1963), 141-157. MR 28 #419. MR 0157182 (28:419)
  • [8] -, Properties of the orthonormal Franklin system. II, Studia Math. 27 (1966), 289-323. MR 34 #3202. MR 0203349 (34:3202)
  • [9] Z. Ciesielski and J. Musielak, On absolute convergence of Haar series, Colloq. Math. 7 (1959), 61-65. MR 22 #863. MR 0109980 (22:863)
  • [10] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. MR 11, 352. MR 0032833 (11:352b)
  • [11] B. I. Golubov, Fourier series of continuous functions with respect to a Haar system, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1271-1296. (Russian) MR 30 #2283. MR 0172057 (30:2283)
  • [12] -, On functions of bounded p-variation, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968),837-858 = Math. USSR Izv. 2 (1968), 799-819. MR 38 #3392. MR 0235080 (38:3392)
  • [13] -, A certain class of complete orthogonal systems, Sibirsk. Mat. Ž. 9 (1968), 297-314 = Siberian Math. J. 9 (1968), 225-239. MR 37 #680. MR 0225083 (37:680)
  • [14] B. I. Golubov and A. I. Rubinštein, A class of convergence systems, Mat. Sb. 71 (113) (1966), 96-115. (Russian) MR 34 #553. MR 0200665 (34:553)
  • [15] I. I. Hirschman, On multiplier transformations, Duke Math. J. 26 (1959), 221-242. MR 21 #3721. MR 0104973 (21:3721)
  • [16] M. Izumi and S. Izumi, On absolute convergence of Fourier series, Ark. Mat. 7 (1967), 177-184. MR 36 #4247. MR 0221195 (36:4247)
  • [17] A. A. Konyushkov, Best approximation by trigonometric polynomials and Fourier coefficients, Mat. Sb. 44 (86) (1958), 53-84. (Russian) MR 20 #2571.
  • [18] J. R. McLaughlin, Haar series, Trans. Amer. Math. Soc. 137 (1969), 153-176. MR 38 #4900. MR 0236605 (38:4900)
  • [19] -, Integrated orthonormal series, Pacific J. Math. 42 (1972), 469-475. MR 0313703 (47:2257)
  • [20] C. W. Onneweer, Absolute convergence of Fourier series on certain groups, Duke Math. J. 39 (1972), 599-609. MR 0316976 (47:5524)
  • [21] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279.
  • [22] J. J. Price, Certain groups of orthonormal step functions, Canad. J. Math. 9 (1957), 413-425. MR 19, 411. MR 0087792 (19:411d)
  • [23] S. B. Stečkin, Absolute convergence of orthogonal series, Uspehi Mat. Nauk 2 (46) (1947), no. 3 (19), 177-178. (Russian)
  • [24] -, On absolute convergence of orthogonal series. I, Mat. Sb. 29 (71) (1951), 225-232; English transl., Amer. Math. Soc. Transl. (1) 3 (1962), 271-280. MR 13, 229. MR 0043247 (13:229g)
  • [25] O. Szász, Quasi-monotone series, Amer. J. Math. 70 (1948), 203-206. MR 9, 278. MR 0022917 (9:278e)
  • [26] T. S. Tevzadze, Absolute convergence of Fourier series, Sakharth. SSR Mecn. Akad. Moambe 57 (1970), 525-528. MR 42 #4942. MR 0270049 (42:4942)
  • [27] P. L. Ul'janov, On Haar series, Mat. Sb. 63 (105) (1964), 356-391. (Russian) MR 28 #4295. MR 0161086 (28:4295)
  • [28] N. Ja. Vilenkin, On a class of complete orthonormal systems, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 363-400; English transl., Amer. Math. Soc. Transl. (2) 28 (1963), 1-35. MR 9, 224; 27 #4001. MR 0154042 (27:4001)
  • [29] -, Supplement to ``Theory of orthogonal series'' (Russian translation of the book by S. Kaczmarz and H. Steinhaus) (translated with a reviewing article by R. S. Gutter and P. L. Ulyanov, edited with a supplement by N. Ya. Vilenkin), Fizmatgiz, Moscow, 1958; English transl., Amer. Math. Soc. Transl. (2) 17 (1961), 219-250. MR 20 #1148; 23 #A1996. MR 0124685 (23:A1996)
  • [30] C. Watari, Best approximation by Walsh polynomials, Tôhoku Math. J. (2) 15 (1963), 1-5. MR 26 #5329. MR 0147816 (26:5329)
  • [31] N. Wiener, The quadratic variation of a function and its Fourier coefficients, Studies in Appl. Math. 3 (1924), 72-94.
  • [32] I. Wik, Criteria for absolute convergence of Fourier series of functions of bounded variation, Trans. Amer. Math. Soc. 163 (1972), 1-24. MR 44 #3068. MR 0285851 (44:3068)
  • [33] L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), 251-282. MR 1555421
  • [34] A. Zygmund, Trigonometrical series. Vols. I, II, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0236587 (38:4882)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A28, 42A56

Retrieve articles in all journals with MSC: 42A28, 42A56


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0336203-2
Keywords: Integrated modulus of continuity, best approximation, bounded pth variation, Lipschitz conditions, quasi-monotone sequences, trigonometric system, Walsh system, generalized Walsh system, Haar system, Franklin system, generalized Haar system, general orthogonal series, basis in $ {L^p}$
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society