Prime ideals and sheaf representation of a pseudo symmetric ring
Author:
Gooyong Shin
Journal:
Trans. Amer. Math. Soc. 184 (1973), 4360
MSC:
Primary 16A34
MathSciNet review:
0338058
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Almost symmetric rings and pseudo symmetric rings are introduced. The classes of symmetric rings, of almost symmetric rings, and of pseudo symmetric rings are in a strictly increasing order. A sheaf representation is obtained for pseudo symmetric rings, similar to the cases of symmetric rings, semiprime rings, and strongly harmonic rings. Minimal prime ideals of a pseudo symmetric ring have the same characterization, due to J. Kist, as for the commutative case. A characterization is obtained for a pseudo symmetric ring with a certain right quotient ring to have compact minimal prime ideal space, extending a result due to Mewborn.
 [1]
Henri
Cartan and Samuel
Eilenberg, Homological algebra, Princeton University Press,
Princeton, N. J., 1956. MR 0077480
(17,1040e)
 [2]
John
Dauns and Karl
Heinrich Hofmann, Representation of rings by sections, Memoirs
of the American Mathematical Society, No. 83, American Mathematical
Society, Providence, R.I., 1968. MR 0247487
(40 #752)
 [3]
L.
Gillman, Rings with Hausdorff structure space, Fund. Math.
45 (1957), 1–16. MR 0092773
(19,1156a)
 [4]
Leonard
Gillman and Meyer
Jerison, Rings of continuous functions, The University Series
in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton,
N.J.TorontoLondonNew York, 1960. MR 0116199
(22 #6994)
 [5]
W.
D. Gwynne and J.
C. Robson, Completions of noncommutative Dedekind prime
rings, J. London Math. Soc. (2) 4 (1971),
346–352. MR 0296109
(45 #5170)
 [6]
M.
Henriksen and M.
Jerison, The space of minimal prime ideals of a
commutative ring, Trans. Amer. Math. Soc.
115 (1965),
110–130. MR 0194880
(33 #3086), http://dx.doi.org/10.1090/S00029947196501948809
 [7]
Karl
Heinrich Hofmann, Representations of algebras by
continuous sections, Bull. Amer. Math. Soc.
78 (1972),
291–373. MR 0347915
(50 #415), http://dx.doi.org/10.1090/S000299041972128994
 [8]
Joseph
Kist, Minimal prime ideals in commutative semigroups, Proc.
London Math. Soc. (3) 13 (1963), 31–50. MR 0143837
(26 #1387)
 [9]
Kwangil
Koh, On functional representations of a ring without nilpotent
elements, Canad. Math. Bull. 14 (1971),
349–352. MR 0369440
(51 #5673)
 [10]
Kwangil
Koh, Quasisimple modules and other topics in ring theory,
Lectures on rings and modules (Tulane Univ. Ring and Operator Theory Year,
19701971, Vol. I), Springer, Berlin, 1972, pp. 323–428.
Lecture Notes in Math., Vol. 246. MR 0335560
(49 #341)
 [11]
Kwangil
Koh, On a representation of a strongly harmonic ring by
sheaves, Pacific J. Math. 41 (1972), 459–468.
MR
0320085 (47 #8626)
 [12]
J.
Lambek, On the representation of modules by sheaves of factor
modules, Canad. Math. Bull. 14 (1971), 359–368.
MR
0313324 (47 #1879)
 [13]
A.
C. Mewborn, Some conditions on commutative semiprime rings, J.
Algebra 13 (1969), 422–431. MR 0276209
(43 #1957)
 [14]
R.
S. Pierce, Modules over commutative regular rings, Memoirs of
the American Mathematical Society, No. 70, American Mathematical Society,
Providence, R.I., 1967. MR 0217056
(36 #151)
 [1]
 H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
 [2]
 J. Dauns and K. H. Hofmann, Representation of rings by sections, Mem. Amer. Math. Soc. No. 83 (1968). MR 40 #752. MR 0247487 (40:752)
 [3]
 L. Gillman, Rings with Hausdorff structure space, Fund. Math. 45 (1957), 116. MR 19, 1156. MR 0092773 (19:1156a)
 [4]
 L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
 [5]
 W. D. Gwynne and J. C. Robson, Completions of noncommutative Dedekind prime rings, J. London Math. Soc. 4 (1972), 346352. MR 0296109 (45:5170)
 [6]
 M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110130. MR 33 #3086. MR 0194880 (33:3086)
 [7]
 K. H. Hofmann, Representations of algebras by continuous sections, Bull. Amer. Math. Soc. 78 (1972), 291373. MR 0347915 (50:415)
 [8]
 J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. (3) 13 (1963), 3150. MR 26 #1387. MR 0143837 (26:1387)
 [9]
 Kwangil Koh, On functional representations of a ring without nilpotent elements, Canad. Math. Bull. 14 (1971), 349352. MR 0369440 (51:5673)
 [10]
 , Quasisimple modules and other topics in ring theory, Lecture Notes in Math., vol. 246, SpringerVerlag, New York, 1972. MR 0335560 (49:341)
 [11]
 , On a representation of a strongly harmonic ring by sheaves, Pacific J. Math. 41 (1972), 459468. MR 0320085 (47:8626)
 [12]
 J. Lambek, On the representations of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359368. MR 0313324 (47:1879)
 [13]
 A. C. Mewborn, Some conditions on commutative semiprime rings, J. Algebra 13 (1969), 422431. MR 43 #1957. MR 0276209 (43:1957)
 [14]
 R. S. Pierce, Modules over commutative regular rings, Mem. Amer. Math. Soc. No. 70 (1967). MR 36 #151. MR 0217056 (36:151)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
16A34
Retrieve articles in all journals
with MSC:
16A34
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197303380589
PII:
S 00029947(1973)03380589
Keywords:
Prime ideal,
sheaf representation,
pseudo symmetric ring,
minimal prime ideal space
Article copyright:
© Copyright 1973
American Mathematical Society
