Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Measurable transformations on compact groups


Author: J. R. Choksi
Journal: Trans. Amer. Math. Soc. 184 (1973), 101-124
MSC: Primary 28A60
DOI: https://doi.org/10.1090/S0002-9947-1973-0338311-9
MathSciNet review: 0338311
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For an arbitrary finite Baire measure $ \mu $ on an arbitrary compact group G, it is shown that every automorphism of the measure algebra of $ \mu $ can be induced by an invertible completion Baire measurable point transformation of G. If $ \mu $ is Haar measure, the point transformation is completion Borel measurable.


References [Enhancements On Off] (What's this?)

  • [1] S. Bochner, Harmonic analysis and the theory of probability, Univ. of California Press, Berkeley, Calif., 1955. MR 17, 273. MR 0072370 (17:273d)
  • [2] J. R. Choksi, Inverse limits of measure spaces, Proc. London Math. Soc. (3) 8 (1958), 321-342. MR 20 #3251. MR 0096768 (20:3251)
  • [3] -, Automorphisms of Baire measures on generalized cubes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22 (1972), 195-204. MR 0310177 (46:9279)
  • [4] -, Automorphisms of Baire measures on generalized cubes. II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972), 97-102. MR 0318444 (47:6991)
  • [5] J. Feldman and F. P. Greenleaf, Existence of Borel transversals on groups, Pacific J. Math. 25 (1968), 455-461. MR 37 #6395. MR 0230837 (37:6395)
  • [6] L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [7] P. R. Halmos, Measure theory, Van Nostrand, Princeton, N. J., 1950. MR 11, 504. MR 0033869 (11:504d)
  • [8] A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Math. und ihrer Grenzgebiete, Band 48, Springer-Verlag, Berlin and New York, 1969. MR 43 #2185. MR 0276438 (43:2185)
  • [9] K. Kuratowski, Topologie. I, 2nd ed., Monografie Mat., Tom 20, Warszawa-Wrocław, 1948; English transl., new ed., rev. and aug., Academic ress, New York; PWN, Warsaw, 1966. MR 10, 389; 36 #840.
  • [10] J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466. MR 21 #3764. MR 0105017 (21:3764)
  • [11] G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101-139. MR 13, 434. MR 0044536 (13:434a)
  • [12] D. Maharam, Automorphisms of products of measure spaces, Proc. Amer. Math. Soc. 9 (1958), 702-707. MR 20 #3963. MR 0097494 (20:3963)
  • [13] J. von Neumann, Einige Sätze über die messbare Abbildungen, Ann. of Math. (2) 33 (1932), 574-586. MR 1503077
  • [14] R. Panzone and C. Segovia, Measurable transformations on compact spaces and o.n. systems on compact groups, Rev. Un. Mat. Argentina 22 (1964), 83-102. MR 30 #2119. MR 0171893 (30:2119)
  • [15] L. S. Pontrjagin, Topological groups, 2nd ed., GITTL, Moscow, 1954; English transl., Gordon and Breach, New York, 1966. MR 17, 171; 34 #1439. MR 0201557 (34:1439)
  • [16] L. Schwartz, Radon measures on arbitrary topological spaces, Studies in Math. Tata Inst. of Fundamental Res., Bombay, 1973. MR 0426084 (54:14030)
  • [17] A. Weil, L'intégration dans les groupes topologiques et ses applications, 2ième éd., Actualités Sci. Indust., no. 869-1145, Hermann, Paris, 1951. MR 3, 198.
  • [18] D. Maharam, On smoothing compact measure spaces by multiplication (to appear). MR 0374367 (51:10567)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A60

Retrieve articles in all journals with MSC: 28A60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0338311-9
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society