The representation of norm-continuous multipliers on -spaces

Author:
Gregory A. Hively

Journal:
Trans. Amer. Math. Soc. **184** (1973), 343-353

MSC:
Primary 43A22

DOI:
https://doi.org/10.1090/S0002-9947-1973-0346425-2

MathSciNet review:
0346425

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If *G* is a group and is an appropriate space of bounded measurable functions on *G*, a representation is obtained for the algebra of norm-continuous multipliers on as an algebra of bounded additive set functions on *G*. If *G* is a locally compact group, a representation of the norm-continuous multipliers on the quotient space is obtained in terms of a quotient algebra of bounded additive set functions on *G*.

**[1]**R. P. Agnew and A. P. Morse,*Extensions of linear functionals with applications to limits, integrals, measures, and densities*, Ann. of Math. (2)**39**(1938), 20-30. MR**1503385****[2]**P. C. Curtis and A. Figá-Talamanca,*Factorization theorems for Banach algebras*, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965), Scott-Foresman, Chicago, Ill., 1966, pp. 169-185. MR**34**#3350. MR**0203500 (34:3350)****[3]**N. Dunford and J. T. Schwartz,*Linear operators*. I:*General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR**22**#8302. MR**0117523 (22:8302)****[4]**P. R. Halmos,*Measure theory*, Van Nostrand, Princeton, N. J., 1950. MR**11**, 504. MR**0033869 (11:504d)****[5]**E. Hewitt and K. A. Ross,*Abstract harmonic analysis*. Vol. 1:*Structure of topological groups, integration theory, group representations*, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR**28**#158. MR**551496 (81k:43001)****[6]**A. Ionescu Tulcea and C. Ionescu Tulcea,*On the existence of a lifting commuting with the left translations of an arbitrary locally compact group*, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), vol. II: Contributions to Probability Theory, part 1, Univ. of California Press, Berkeley, Calif., 1967, pp. 63-97. MR**35**#2997. MR**0212122 (35:2997)****[7]**R. A. Johnson,*On product measures and Fubini's theorem in locally compact spaces*, Trans. Amer. Math. Soc.**123**(1966), 112-129. MR**33**#5832. MR**0197669 (33:5832)****[8]**M. A. Rieffel,*Induced Banach representations of Banach algebras and locally compact groups*, J. Functional Analysis**1**(1967), 443-491. MR**36**#6544. MR**0223496 (36:6544)****[9]**J. D. Stafney,*Arens multiplication and convolution*, Pacific J. Math.**14**(1964), 1423-1447. MR**31**#1321. MR**0177057 (31:1321)****[10]**J. G. Wendel,*Left centralizers and isomorphisms of group algebras*, Pacific J. Math.**2**(1952), 251-261. MR**14**, 246. MR**0049911 (14:246c)****[11]**W. Rudin,*Invariant means on*, Studia Math.**44**(1972), 219-227. MR**0304975 (46:4105)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
43A22

Retrieve articles in all journals with MSC: 43A22

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1973-0346425-2

Keywords:
Group,
locally compact group,
bounded measurable function,
left translation,
multiplier,
bounded additive set function,
lifting,
isometric algebraic isomorphism,
representation

Article copyright:
© Copyright 1973
American Mathematical Society