Cauchy problem and analytic continuation for systems of first order elliptic equations with analytic coefficients

Author:
Chung Ling Yu

Journal:
Trans. Amer. Math. Soc. **185** (1973), 429-443

MSC:
Primary 35J45

MathSciNet review:
0326162

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *a, b, c, d, f, g* be analytic functions of two real variables *x, y* in the plane. Consider the elliptic equation (M) . The following areas will be investigated:

(1) the integral respresentations for solutions of (M) to the boundary of a simply connected domain *G*;

(2) reflection principles for (M) under nonlinear analytic boundary conditions;

(3) the sufficient conditions for the nonexistence and analytic continuation for the solutions of the Cauchy problem for (M).

**[1]**Lipman Bers,*Theory of pseudo-analytic functions*, Institute for Mathematics and Mechanics, New York University, New York, 1953. MR**0057347****[2]**Lawrence M. Graves,*The theory of functions of real variables*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956. 2d ed. MR**0075256****[3]**Peter Henrici,*A survey of I. N. Vekua’s theory of elliptic partial differential equations with analytic coefficients*, Z. Angew. Math. Phys.**8**(1957), 169–203. MR**0085427****[4]**P. R. Garabedian,*Analyticity and reflection for plane elliptic systems*, Comm. Pure Appl. Math.**14**(1961), 315–322. MR**0136848****[5]**Hans Lewy,*On the reflection laws of second order differential equations in two independent variables*, Bull. Amer. Math. Soc.**65**(1959), 37–58. MR**0104048**, 10.1090/S0002-9904-1959-10270-6**[6]**Hans Lewy,*A note on harmonic functions and a hydrodynamical application*, Proc. Amer. Math. Soc.**3**(1952), 111–113. MR**0049399**, 10.1090/S0002-9939-1952-0049399-9**[7]**I. N. Vekua,*Generalized analytic functions*, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962. MR**0150320****[8]**I. N. Vekua,*Novye metody rešeniya èlliptičeskih uravneniĭ*, OGIZ, Moscow-Leningrad,], 1948 (Russian). MR**0034503****[9]**Chung Ling Yu,*Reflection principle for systems of first order elliptic equations with analytic coefficients*, Trans. Amer. Math. Soc.**164**(1972), 489–501. MR**0293110**, 10.1090/S0002-9947-1972-0293110-0

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35J45

Retrieve articles in all journals with MSC: 35J45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1973-0326162-0

Keywords:
First order elliptic equations,
pseudo-analytic functions,
Cauchy-Riemann equations,
Cauchy problem,
analytic continuation,
Volterra integral equations

Article copyright:
© Copyright 1973
American Mathematical Society