Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On coefficient means of certain subclasses of univalent functions


Authors: F. Holland and J. B. Twomey
Journal: Trans. Amer. Math. Soc. 185 (1973), 151-163
MSC: Primary 30A34
MathSciNet review: 0328054
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{R}$ denote the class of regular functions whose derivatives have positive real part in the unit disc $ \gamma $ and let $ \mathcal{S}$ denote the class of functions starlike in $ \gamma $. In this paper we investigate the rates of growth of the means $ {s_n}(\lambda ) = {n^{ - 1}}\Sigma _1^n\vert{a_k}{\vert^\lambda }(0 < \lambda \leq 1)$ and $ {t_n}(\lambda ) = {n^{ - 1}}\Sigma _1^n{k^\lambda }\vert{a_k}{\vert^\lambda }\;(\lambda > 0)$ as $ n \to + \infty $ for bounded $ f(z) = \Sigma _1^\infty {a_k}{z^k} \in \mathcal{R} \cup \mathcal{S}$. It is proved, for example, that the estimate $ {t_n}(\lambda ) = o(1){(\log n)^{ - \alpha (\lambda )}}(n \to + \infty )$, where $ \alpha (\lambda ) = \lambda /2$ for $ 0 < \lambda < 2$ and $ \alpha (\lambda ) = 1$ for $ \lambda \geq 2$, holds for such functions f, and that it is best possible for each fixed $ \lambda > 0$ within the class $ \mathcal{R}$ and for each fixed $ \lambda \geq 2$ within the class $ \mathcal{S}$.

It is also shown that the inequality $ {s_n}(1) = o(1){n^{ - 1}}{(\log n)^{1/2}}$, which holds for all bounded univalent functions, cannot be improved for bounded $ f \in \mathcal{R}$. The behavior of $ {t_n}(\lambda )$ as $ n \to + \infty $ when $ {a_k} \geq 0(k \geq 1)$ and $ \lambda \geq 1$ is also examined.


References [Enhancements On Off] (What's this?)

  • [1] N. K. Bary, A treatise on trigonometric series. Vols. I, II, Authorized translation by Margaret F. Mullins. A Pergamon Press Book, The Macmillan Co., New York, 1964. MR 0171116
  • [2] J. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc. 35 (1960), 229–233. MR 0110814
  • [3] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1934.
  • [4] P. B. Kennedy and J. B. Twomey, Some properties of bounded univalent functions and related classes of functions, Proc. Roy. Irish Acad. Sect. A 65 (1967), 43–49 (1967). MR 0213528
  • [5] J. Marcinkiewicz, Sur la convergence des séries orthogonales, Studia Math. 6(1936), 39-45.
  • [6] J. B. Twomey, On bounded starlike functions, J. Analyse Math. 24 (1971), 191–204. MR 0294619
  • [7] J. B. Twomey, On the derivative of a starlike function, J. London Math. Soc. (2) 2 (1970), 99–110. MR 0254227

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A34

Retrieve articles in all journals with MSC: 30A34


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0328054-X
Keywords: Coefficient means, bounded univalent functions, starlike functions, derivatives with positive real part
Article copyright: © Copyright 1973 American Mathematical Society