Mechanical systems with symmetry on homogeneous spaces
Author:
Ernesto A. Lacomba
Journal:
Trans. Amer. Math. Soc. 185 (1973), 477491
MSC:
Primary 58F05
MathSciNet review:
0331426
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The geodesic flow on a homogeneous space with an invariant metric can be naturally considered within the framework of Smale's mechanical systems with symmetry. In this way we have at our disposal the whole method of Smale for studying such systems. We prove that certain sets and Re which play an important role in the global behavior of those systems, have a particularly simple structure in our case, and we also find some geometrical implications about the geodesics. The results obtained are especially powerful for the case of Lie groups, as in the rigid body problem.
 [1]
Ralph
Abraham, Jerrold
E. Marsden, Al
Kelley, and A.
N. Kolmogorov, Foundations of mechanics. A mathematical exposition
of classical mechanics with an introduction to the qualitative theory of
dynamical systems and applications to the threebody problem, With the
assistance of Jerrold E. Marsden. Four appendices, one by the author, two
by Al Kelley, the fourth, a translation of an article by A. N. Kolmogorov,
W. A. Benjamin, Inc., New YorkAmsterdam, 1967. MR 0220467
(36 #3527)
 [2]
Ralph
Abraham and Joel
Robbin, Transversal mappings and flows, An appendix by Al
Kelley, W. A. Benjamin, Inc., New YorkAmsterdam, 1967. MR 0240836
(39 #2181)
 [3]
V.
Arnold, Sur la géométrie différentielle des
groupes de Lie de dimension infinie et ses applications à
l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier
(Grenoble) 16 (1966), no. fasc. 1, 319–361
(French). MR
0202082 (34 #1956)
 [4]
Sigurđur
Helgason, Differential geometry and symmetric spaces, Pure and
Applied Mathematics, Vol. XII, Academic Press, New YorkLondon, 1962. MR 0145455
(26 #2986)
 [5]
Robert
Hermann, Differential geometry and the calculus of variations,
Mathematics in Science and Engineering, Vol. 49, Academic Press, New
YorkLondon, 1968. MR 0233313
(38 #1635)
 [6]
Andrei
Iacob, Invariant manifolds in the motion of a rigid body about a
fixed point, Rev. Roumaine Math. Pures Appl. 16
(1971), 1497–1521. MR 0303801
(46 #2937)
 [7]
Bertram
Kostant, On differential geometry and homogeneous spaces. I,
II, Proc. Nat. Acad. Sci. U.S.A. 42 (1956),
258–261, 354–357. MR 0088017
(19,454a)
 [8]
E. Lacomba, Ph.D. Thesis, University of California, Berkeley, Calif., 1972.
 [9]
John
Milnor, Singular points of complex hypersurfaces, Annals of
Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.;
University of Tokyo Press, Tokyo, 1968. MR 0239612
(39 #969)
 [10]
Katsumi
Nomizu, Invariant affine connections on homogeneous spaces,
Amer. J. Math. 76 (1954), 33–65. MR 0059050
(15,468f)
 [11]
J. Robbin, Relative equilibria in mechanical systems, Proc. Internat. Conf. on Dynamical Systems, Bahia, Brazil, 1971.
 [12]
S.
Smale, Topology and mechanics. I, Invent. Math.
10 (1970), 305–331. MR 0309153
(46 #8263)
 [13]
S.
Smale, Topology and mechanics. II. The planar 𝑛body
problem, Invent. Math. 11 (1970), 45–64. MR 0321138
(47 #9671)
 [1]
 R. Abraham, Foundations of mechanics, A mathematical exposition of classical mechanics with an introduction to the qualitative theory of dynamical systems and applications to the threebody problem, Benjamin, New York, 1967. MR 36 #3527. MR 0220467 (36:3527)
 [2]
 R. Abraham and J. Robbin, Transversal mappings and flows, Benjamin, New York, 1967. MR 39 #2181. MR 0240836 (39:2181)
 [3]
 V. I. Arnol'd, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), fasc. 1, 319361. MR 34 #1956. MR 0202082 (34:1956)
 [4]
 S. Helgason, Differential geometry and symmetric spaces, Pure and Appl. Math., vol. 12, Academic Press, New York, 1962. MR 26 #2986. MR 0145455 (26:2986)
 [5]
 R. Hermann, Differential geometry and the calculus of variations. Math. in Science and Engineering, vol. 49, Academic Press, New York, 1968. MR 38 # 1635. MR 0233313 (38:1635)
 [6]
 A. Iacob, Invariant manifolds in the motion of a rigid body, Rev. Roumaine Math. Pures Appl. 16 (1971), 14971521. MR 0303801 (46:2937)
 [7]
 B. Kostant, On differential geometry and homogeneous spaces. I, II, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 258261, 354357. MR 19, 454. MR 0088017 (19:454a)
 [8]
 E. Lacomba, Ph.D. Thesis, University of California, Berkeley, Calif., 1972.
 [9]
 J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies, no. 61, Princeton Univ. Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1968. MR 39 #969. MR 0239612 (39:969)
 [10]
 K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 3365. MR 15, 468. MR 0059050 (15:468f)
 [11]
 J. Robbin, Relative equilibria in mechanical systems, Proc. Internat. Conf. on Dynamical Systems, Bahia, Brazil, 1971.
 [12]
 S. Smale, Topology and mechanics. I, Invent. Math. 10 (1970), 305331. MR 0309153 (46:8263)
 [13]
 , Topology and mechanics. II, Invent. Math. 11 (1970), 4564. MR 0321138 (47:9671)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
58F05
Retrieve articles in all journals
with MSC:
58F05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197303314260
PII:
S 00029947(1973)03314260
Keywords:
Global viewpoint,
mechanical systems with symmetry,
rigid body problem,
kinetic and potential energy,
momentum,
invariant submanifolds,
bifurcation set,
relative equilibria,
Ginvariant metric,
algebraic and semialgebraic sets,
algebraic manifold,
algebraic linear group
Article copyright:
© Copyright 1973
American Mathematical Society
