The strong law of large numbers when the mean is undefined

Author:
K. Bruce Erickson

Journal:
Trans. Amer. Math. Soc. **185** (1973), 371-381

MSC:
Primary 60G50; Secondary 60F15

MathSciNet review:
0336806

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let where are i.i.d. random variables with . An integral test is given for each of the three possible alternatives a.s.; a.s.; and a.s. Some applications are noted.

**[1]**K. G. Binmore and Melvin Katz,*A note on the strong law of large numbers*, Bull. Amer. Math. Soc.**74**(1968), 941–943. MR**0230354**, 10.1090/S0002-9904-1968-12098-1**[2]**C. Derman and H. Robbins,*The strong law of large numbers when the first moment does not exist*, Proc. Nat. Acad. Sci. U.S.A.**41**(1955), 586–587. MR**0070873****[3]**K. Bruce Erickson,*A renewal theorem for distributions on 𝑅¹ without expectation*, Bull. Amer. Math. Soc.**77**(1971), 406–410. MR**0279906**, 10.1090/S0002-9904-1971-12717-9**[4]**William Feller,*An introduction to probability theory and its applications. Vol. II.*, Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR**0270403****[5]**Harry Kesten,*The limit points of a normalized random walk*, Ann. Math. Statist.**41**(1970), 1173–1205. MR**0266315****[6]**Simon Kochen and Charles Stone,*A note on the Borel-Cantelli lemma*, Illinois J. Math.**8**(1964), 248–251. MR**0161355****[7]**John A. Williamson,*Fluctuations when 𝐸(𝑋₁)=∞*, Ann. Math. Statist.**41**(1970), 865–875. MR**0264731**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60G50,
60F15

Retrieve articles in all journals with MSC: 60G50, 60F15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1973-0336806-5

Keywords:
Independent identically distributed random variables,
mean undefined,
strong law of large numbers,
renewal function,
truncated mean function

Article copyright:
© Copyright 1973
American Mathematical Society