Relative projectivity, the radical and complete reducibility in modular group algebras
Author:
D. C. Khatri
Journal:
Trans. Amer. Math. Soc. 186 (1973), 5163
MSC:
Primary 20C05
MathSciNet review:
0327880
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: If and every Gmodule is Hprojective then (G, H) is a projective pairing. If Rad then (G, H) is said to have property p. A third property considered is that for each irreducible Hmodule the induced Gmodule be completely reducible. It is shown that these three are equivalent properties in many interesting cases. Also examples are given to show that they are, in general, independent of each other.
 [1]
Richard
Brauer, Investigations on group characters, Ann. of Math. (2)
42 (1941), 936–958. MR 0005731
(3,196b)
 [2]
R.
Brauer and C.
Nesbitt, On the modular characters of groups, Ann. of Math.
(2) 42 (1941), 556–590. MR 0004042
(2,309c)
 [3]
Charles
W. Curtis and Irving
Reiner, Representation theory of finite groups and associative
algebras, Pure and Applied Mathematics, Vol. XI, Interscience
Publishers, a division of John Wiley & Sons, New YorkLondon, 1962. MR 0144979
(26 #2519)
 [4]
J.
A. Green, On the indecomposable representations of a finite
group, Math. Z. 70 (1958/59), 430–445. MR 0131454
(24 #A1304)
 [5]
D.
G. Higman, Modules with a group of operators, Duke Math. J.
21 (1954), 369–376. MR 0067895
(16,794b)
 [6]
G.
Hochschild, Relative homological algebra,
Trans. Amer. Math. Soc. 82 (1956), 246–269. MR 0080654
(18,278a), http://dx.doi.org/10.1090/S00029947195600806540
 [7]
D.
C. Khatri and I.
Sinha, Projective pairings in groups. II, Math. Japon.
14 (1969), 127–135. MR 0276374
(43 #2121)
 [8]
W.
R. Scott, Group theory, PrenticeHall Inc., Englewood Cliffs,
N.J., 1964. MR
0167513 (29 #4785)
 [9]
Indranand
Sinha, On the radical of subrings of rings, Math. Student
34 (1966), 185–190 (1968). MR 0234981
(38 #3293)
 [10]
I. Sinha, On a converse of Clifford's theorem, Abstracts, Indian Math. Soc. 1967, 34.
 [11]
, Projectivepairings in group rings, Report, Algebra Symposium, Ind. Sc. Congress, 1968.
 [12]
D.
A. R. Wallace, Note on the radical of a group algebra, Proc.
Cambridge Philos. Soc. 54 (1958), 128–130. MR 0092783
(19,1158a)
 [13]
D.
A. R. Wallace, Group algebras with central radicals, Proc.
Glasgow Math. Assoc. 5 (1962), 103–108 (1962). MR 0140589
(25 #4007)
 [1]
 Richard Brauer, Investigations on group characters, Ann. of Math. (2) 42 (1941), 936958. MR 3, 196. MR 0005731 (3:196b)
 [2]
 R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42 (1941), 556590. MR 2, 309. MR 0004042 (2:309c)
 [3]
 C. W. Curtis and I. Reiner, Representation theory of finite groups and associativealgebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 #2519. MR 0144979 (26:2519)
 [4]
 J. A. Green, On the indecomposable representations of finite groups, Math. Z. 70 (1958/59), 430445. MR 24 #A1304. MR 0131454 (24:A1304)
 [5]
 D. G. Higman, Modules with a group of operators, Duke Math. J. 21 (1954), 369376. MR 16, 794. MR 0067895 (16:794b)
 [6]
 G. Hochschild, Relativehomological algebra, Trans. Amer. Math. Soc. 82 (1956), 246269. MR 18, 278. MR 0080654 (18:278a)
 [7]
 D. C. Khatri and I. Sinha, Projectivepairings in groups. II, Math. Japon. 14 (1969), 127135. MR 43 #2121. MR 0276374 (43:2121)
 [8]
 W. R. Scott, Group theory, PrenticeHall, Englewood Cliffs, N. J., 1964. MR 29 #4785. MR 0167513 (29:4785)
 [9]
 I. Sinha, On the radical of subrings of rings, Math. Student 34 (1966), 185190. MR 38 #3293. MR 0234981 (38:3293)
 [10]
 I. Sinha, On a converse of Clifford's theorem, Abstracts, Indian Math. Soc. 1967, 34.
 [11]
 , Projectivepairings in group rings, Report, Algebra Symposium, Ind. Sc. Congress, 1968.
 [12]
 D. A. R. Wallace, Note on the radical of group algebra, Proc. Cambridge Philos. Soc. 54 (1958), 128130. MR 19, 1158. MR 0092783 (19:1158a)
 [13]
 , Group algebras with central radicals, Proc. Glasgow Math. Assoc. 5 (1962), 103108. MR 25 #4007. MR 0140589 (25:4007)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
20C05
Retrieve articles in all journals
with MSC:
20C05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197303278800
PII:
S 00029947(1973)03278800
Keywords:
Projective pairing,
Jacabson radical,
complete reducibility,
Frobenius groups
Article copyright:
© Copyright 1973 American Mathematical Society
